Some commutativity results for S-unital rings

Some commutativity results for S-unital rings

In the present paper, it is shown that if R is a left ( resp. right) s-unital ring satisfying $[f(y^mx^ry^s) pm x^ty, x]$ = 0 (resp. $[f(y^mx^ry^s) pm yx^t, x]$ = 0), where m, r, s, t are fixed non-negative integers and $f(lambda)$ is a polynomial in $lambda^2{bf Z}[lambda]$, then R is commutative. Commutativity of R has also been investigated under different sets of constraints on integral exponents.

___

  • [1] H. E. Bell, M. A. Quadri and M. A. Khan, Two commutativity theorems for rings, Rad.Mat. 3 (1987), 255-260.
  • [2] I. N. Herstein, Two remarks on the commutativity of rings, Canad. J. Math. 7 (1955), 411- 412.
  • [3] Y. Hirano, Y. Kobayashi and H. Tominaga, Some polynomial identities and commutativityofs-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
  • [4] T. P. Kezlan, A note on commutativity of semiprime PI-rings, Math. Japon. 27 (1982), 267- 268.
  • [5] M. A. Khan, Commutativity of rights-unital rings with polynomial constraints, Jour. Inst.Math & Comp. Sci. 12 (1999), 47 - 51.
  • [6] M. A. Khan, Commutativity theorems through a Streb's classi cation, Proc. Irish Math.Acad. Sci. No. 2 (2000) (to appear).
  • [7] H. Komatsu, A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 109- 111.
  • [8] H. Komatsu, T. Nishinaka and H. Tominaga, On commutativity of rings, Rad. Mat. 6(1990), 303 - 311.
  • [9] H. Komatsu and H. Tominaga, Chacron's condition and commutativity theorems, Math. J.Okayama Univ. 31 (1989), 101 - 120.
  • [10] E. Psomopoulos, A commutativity theorem for rings, Math. Japon. 29 (1984), 371 - 373.
  • [11] W. Streb, Zur struktur nichtkommtativer ringe, Math. J. Okayama Univ. 31 (1989), 135 -140.