Some classes of harmonic mappings with analytic part defined by subordination

Some classes of harmonic mappings with analytic part defined by subordination

Let SHbe the class of functions f = h + g¯ that are harmonic univalent and sense-preserving in the open unit disk U = {z ∈ C : |z| < 1}, where h, g are analytic and f (0) = fz′ (0) − 1 = 0 in U. In this paper, we investigate the properties of some subclasses of SH such that h(z) is a starlike (or convex) function defined by subordination. We provide coefficient estimates, extremal function, distortion and growth estimates of g , growth, and Jacobian estimates of f . We also obtain area estimates and covering theorems of the classes. The results presented here generalize some known results.

___

  • [1] Ahuja OP. Planar harmonic convolution operators generated by hypergeometric functions. Integr Transf Spec F 2007; 18: 165-177.
  • [2] Ali RM, Stephen BA, Subramanian KG. Subclasses of harmonic mappings defined by convolution. Appl Math Lett 2010; 23: 1243-1247.
  • [3] Clunie J, Sheil-Small T. Harmonic univalent functions. Ann Acad Sci Fenn Ser A I Math 1984; 39: 3-25.
  • [4] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259. New York, NY, USA: Springer-Verlag, 1983.
  • [5] Duren PL. Harmonic Mappings in the Plane. Cambridge, UK: Cambridge University Press, 2004.
  • [6] El-Ashwah RM, Hassan AH. Fekete-Szegö inequalities for certain subclass of analytic functions defined by using Sǎlǎgean operator. Miskolc Mathematical Notes 2017; 17: 827-836.
  • [7] Fekete M, Szegö G. Eine Bemerkung uber ungerade schlichte Funktionen. J London Math Soc 1933; 8: 85-89 (in German).
  • [8] Goluzin GM. Geometric Theory of Functions of a Complex Variable. Providence, RI, USA: American Mathematical Society, 1969.
  • [9] Hotta I, Michalski A. Locally one-to-one harmonic functions with starlike analytic part. arXiv preprint arXiv:1404.1826, 2014.
  • [10] Jahangiri JM. Coefficient bounds and univalence criteria for harmonic functions with negative coefficients. Ann Univ Marie Curie-Sklodowska Sect A 1998; 52: 57-66.
  • [11] Jahangiri JM. Harmonic functions starlike in the unit disk. J Math Anal Appl 1999; 235: 470-477.
  • [12] Janowski W. Some extremal problems for certain families of analytic functions. Ann Pol Math 1973; 28: 297-326.
  • [13] Kahramaner Y, Polatoǧlu Y, Aydoǧan M. Harmonic mappings related to Janowski starlike functions. J Computat Appl Math 2014; 270: 564-570.
  • [14] Kanas S, Klimek-Sme￿t D. Coefficient estimates and Bloch’s constant in some classes of harmonic mappings. B Malays Math Sci So 2016; 39: 741-750.
  • [15] Klimek D, Michalski A. Univalent anti-analytic perturbations of the identity in the unit disc. Sci Bull Chelm 2006; 1: 67-76.
  • [16] Klimek D, Michalski A. Univalent anti-analytic perturbations of convex analytic mappings in the unit disc. Ann Univ Mariae Curie-Skłodowska Sect A 2007; 61: 39-49.
  • [17] Koepf W. On the Fekete-Szegö problem for close-to-convex functions. P Am Math Soc 1987; 101: 89-95.
  • [18] Kohr G, Graham I. Geometric Function Theory in One and Higher Dimensions. New York, NY, USA: Marcel Dekker, 2003.
  • [19] Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings. B Am Math Soc 1936; 42: 689-692.
  • [20] Ma W, Minda D. A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, 1994, pp. 157-169.
  • [21] Nagpal S, Ravichandran V. A comprehensive class of harmonic functions defined by convolution and its connection with integral transforms and hypergeometric functions. Stud Univ Babes Bolyai-Math 2014; 59: 41-55.
  • [22] Öztürk M, Yalçin S, Yamankaradeniz M. Convex subclass of harmonic starlike functions. Appl Math Comput 2004; 154: 449-459.
  • [23] Polatoǧlu Y, Bolcal M, Sen A. Two-point distortion theorems for certain families of analytic functions in the unit disc. International Journal of Mathematics and Mathematical Sciences 2003; 2003: 4183-4193.
  • [24] Robertson MIS. On the theory of univalent functions. Ann Math 1936; 37: 374-408.
  • [25] Sakar FM, Aydoǧan M. Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions. Appl Math Comput 2018; 319: 461-468.
  • [26] Sakar FM, Aytaş S, Güney HÖ. On The Fekete-Szegö problem for generalized class M ; ( ) defined by differential operator. Süleyman Demirel University Journal of Natural and Applied Sciences 2016; 20: 456-459.
  • [27] Sakar FM, Güney HÖ. Subordination results for certain subclasses by using integral operator defined in the space of analytic functions. Honam Math J 2018; 40: 315-323.
  • [28] Silverman H. Harmonic univalent functions with negative coefficients. J Math Anal Appl 1998; 220: 283-289.
  • [29] Silverman H, Silvia EM. Subclasses of harmonic univalent functions. New Zeal J Math 1999; 28: 275-284.
  • [30] Sun Y, Jiang YP, Rasila A. On a subclass of close-to-convex harmonic mappings. Complex Var Elliptic 2016; 61: 1627-1643.
  • [31] Wang ZG, Liu ZH, Rasila A, Sun Y. On a problem of Bharanedhar and Ponnusamy involving planar harmonic mappings. Rocky Mt J Math 2018; 48: 1345-1358.
  • [32] Zhu M, Huang X. The distortion theorems for harmonic mappings with analytic parts convex or starlike functions of order . Journal of Mathematics 2015; 2015: 460191.