Small genus-4 Lefschetz fibrations on simply-connected 4-manifolds

Small genus-4 Lefschetz fibrations on simply-connected 4-manifolds

We consider simply connected 4-manifolds admitting Lefschetz fibrations over the 2-sphere. We explicitly construct nonhyperelliptic and hyperelliptic Lefschetz fibrations of genus 4 on simply-connected 4-manifolds which are exotic symplectic 4-manifolds in the homeomorphism classes of mathbb{CP}^2#8overline{CP}2 and mathbb{CP}^2#9overline{CP}2 , respectively. From these, we provide upper bounds for the minimal number of singular fibers of such fibrations. In addition, we prove that this number is equal to 18 for g = 3 when such fibrations are hyperelliptic. Moreover, we discuss these numbers for higher genera.

___

  • [1] Akhmedov A, Baykur Rİ, Park D. Constructing infinitely many smooth structures on small 4-manifolds. Journal of Topology 2008; 1 (2): 409-428. doi: 10.1112/jtopol/jtn004
  • [2] Akhmedov A, Park D. Exotic smooth structures on small 4-manifolds with odd signatures.Inventiones Mathematicae 2010; 181 (3): 577-603. doi: 10.1007/s00222-010-0254-y
  • [3] Altunöz T. The number of singular fibers in hyperelliptic Lefschetz fibrations. Journal of the Mathematical Society of Japan 2020; 72 (4): 1309-1325. doi: 10.2969/jmsj/82988298
  • [4] Baldridge S, Kirk P. A symplectic manifold homeomorphic but not diffeomorphic to to CP2#3CP2 . Geometry & Topology 2008; 12 (2): 919-940. doi: 10.2140/gt.2008.12.919
  • [5] Baykur Rİ. Small symplectic Calabi-Yau surfaces and exotic 4-manifolds via genus-3 pencils.
  • [6] Baykur Rİ, Korkmaz M. Small Lefschetz fibrations and exotic 4-manifolds. Mathematische Annalen 2017; 367 ( 3-4): 1333-1361. doi: 10.1007/s00208-016-1466-2
  • [7] Baykur Rİ, Korkmaz M. An interesting genus-3 Lefschetz fibration.
  • [8] Baykur Rİ, Korkmaz M, Monden N. Sections of surface bundles and Lefschetz fibrations. Transactions of the American Mathematical Society 2013; 365 (11): 5999-6016. doi: 10.1090/S0002-9947-2013-05840-0
  • [9] Birman JS, Hilden H. On the mapping class groups of closed surfaces as covering spaces. Advances in the theory of Riemann surfaces. Annals of Mathematics Studies 1971; 66: 81-115.
  • [10] Cadavid C. A remarkable set of words in the mapping class group, PhD, University of Texas, Austin, 1998.
  • [11] Dalyan E, Medetoğulları E, Pamuk M. A note on the generalized Matsumoto relation. Turkish Journal of Mathematics 2017; 41 (3): 524-536. doi: 10.3906/mat-1512-87
  • [12] Donaldson SK. Irrationality and the h-cobordism conjecture. Journal of Differential Geometry 1987; 26 (1): 141-168.
  • [13] Donaldson SK. Lefschetz pencils on symplectic manifolds. Journal of Differential Geometry 1999: 53 (2): 205-236.
  • [14] Endo H. Meyer’s signature cocycle and hyperelliptic fibrations. Mathematische Annalen 2000; 316: 237-257. doi:10.1007/s002080050012
  • [15] Endo H, Nagami S. Signature of relations in mapping class groups and non-holomorphic Lefschetz fibrations. Transactions of the American Mathematical Society 2005; 357 (8): 3179-3199. doi:10.1090/S0002-9947-04-03643-8
  • [16] Fintushel R, Stern R. Rational blowdowns of smooth 4-manifolds. Journal of Differential Geometry 1997; 46 (2): 181-235.
  • [17] Fintushel R, Stern R. Knots, links and 4-manifolds. Inventiones Mathematicae 1998; 134 (2): 363-400. doi: 10.1007/s002220050268
  • [18] Fintushel R, Stern R. Pinwheels and nullhomologous surgery on 4-manifolds with $b^+_2 = 1$. Algebraic & Geometric Topology 2011; 11 (3): 1649-1699. doi: 10.2140/agt.2011.11.1649
  • [19] Friedman R, Morgan JW. Smooth four-manifolds and complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 27 (3): Springer-Verlag, Berlin, 1994.
  • [20] Gompf RE. A new construction of symplectic manifolds. Annals of Mathematics. Second Series 1995; 142 (3): 527-595. doi: 10.2307/2118554
  • [21] Gompf RE, Stipsicz AI. 4-Manifolds and Kirby Calculus. Graduate Studies in Mathematics; 20, American Mathematical Society, Rhode Island, 1999.
  • [22] Hamada N. Sections of the Matsumoto-Cadavid-Korkmaz Lefschetz fibration. preprint, arXiv:1610.08458v2.
  • [23] Hamada N. Upper bounds for the minimal number of singular fibers in a Lefschetz fibration over the torus. Michigan Mathematical Journal 2014; 63 (2): 275-291. doi: 10.1307/mmj/1401973051
  • [24] Korkmaz M. Noncomplex smooth 4-manifolds with Lefschetz fibrations. International Mathematics Research Notices 2001; (3): 115-128. doi: 10.1155/S107379280100006X
  • [25] Korkmaz M, Ozbagci B. Minimal number of singular fibers in a Lefschetz fibration. Proceedings of the American Mathematical Society 2001; 129 (5): 1545-1549. doi: 10.1090/S0002-9939-00-05676-8
  • [26] Korkmaz M, Stipsicz AI. Lefschetz fibrations on 4-manifolds. Handbook of Teichmüller theory. II, IRMA Lectures in Mathematics and Theoretical Physic, 13, European Mathematical Society, Zürich, 2009: 271-296. doi: 10.4171/055- 1/9
  • [27] Korkmaz, M. Lefschetz fibrations and an invariant of finitely presented groups. International Mathematics Research Notices. IMRN 2009; (9): 1547-1572. doi: 10.1093/imrn/rnn164
  • [28] Kotschick D. On manifolds homeomorphic tomathbb{CP}^2#8overline{CP}^2. Inventiones Mathematicae 1989; 95 (3): 591-600. doi: 10.1007/BF01393892
  • [29] Matsumoto Y. On 4-manifolds fibered by tori II. Japan Academy. Proceedings. Series A. Mathematical Sciences 1983; 59 (3): 100-103.
  • [30] Matsumoto Y. Lefschetz fibrations of genus two - a topological approach. Topology and Teichmüller spaces 1996: 123-148.
  • [31] Monden N. On minimal number of singular fibers in a genus-2 Lefschetz fibration. Tokyo Journal of Mathematics 2012; 35 (2): 483-490. doi: 10.3836/tjm/1358951332
  • [32] Ozbagci B. Signatures of Lefschetz fibrations. Pacific Journal of Mathematics 2002; 202 (1): 99-118. doi: 10.2140/pjm.2002.202.99
  • [33] Ozbagci B, Stipsicz AI. Contact 3-manifolds with infinitely many Stein fillings. Proceedings of the American Mathematical Society 2004; 132 (5): 1549-1558. doi: 10.1090/S0002-9939-03-07328-3
  • [34] Park BD. Exotic smooth structures on 3mathbb{CP}^2#noverline{CP}^2. Proceedings of the American Mathematical Society 2000; 128 (10: 3057-3065. doi: 10.1090/S0002-9939-00-05357-0
  • [35] Park J. Simply connected symplectic 4-manifolds with b+2 = 1 and c21 = 2. Inventiones Mathematicae 2005; 159 (3): 657-667. doi: 10.1007/s00222-004-0404-1
  • [36] Stipsicz AI, Szabó Z. The smooth classification of elliptic surfaces with b+2 > 1. Duke Mathematical Journal 1994; 75 (1): 1-50. doi: 10.1215/S0012-7094-94-07501-7
  • [37] Stipsicz AI, Yun K-Y. On minimal number of singular fibers in Lefschetz fibrations over the torus. Proceedings of the American Mathematical Society 2017; 145 (8): 3607-3616. doi: 10.1090/proc/13480
  • [38] Xiao G. Surfaces fibrée en courbes de genre deux. Lecture Notes in Mathematics, 1137 Springer-Verlag, Berlin, 1985 (in French).