Rings over which every module has a flat $delta$-cover

Rings over which every module has a flat $delta$-cover

Let M be a module. A $delta$-cover of M is an epimorphism from a module F onto M with a $delta$-small kernel. A $delta$-cover is said to be a flat $delta$-cover in case F is a flat module. In the present paper, we investigate some properties of (flat) $delta$-covers and flat modules having a projective $delta$-cover. Moreover, we study rings over which every module has a flat $delta$-cover and call them right generalized $delta$-perfect rings. We also give some characterizations of $delta$-semiperfect and $delta$-perfect rings in terms of locally (finitely, quasi-, direct-) projective $delta$-covers and flat $delta$-covers.

___

  • [1] Alkan, M., Nicholson, W. K., Ozcan, A. C .: A generalization of projective covers. J. Algebra. 319, 4947–4960 (2008).
  • [2] Amini, A., Amini, B., Ershad, M., Sharif, H.: On generalized perfect rings. Comm. Algebra. 35, 953–963 (2007).
  • [3] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. New-York: Springer-Verlag 1992.
  • [4] Azumaya, G.: Strongly π-regular rings. J. Fac. Sci. Hokkaido Univ. 13, 34–39 (1954).
  • [5] Azumaya, G.: Some characterizations of regular modules. Publ. Mat. 34, 241–248 (1990).
  • [6] Bican L., El Bashir R., Enochs E.: All modules have flat covers. Bull. London Math. Soc. 33, 385–390 (2001).
  • [7] B¨uy¨uka¸sık, E., Lomp, C.: When δ -semiperfect rings are semiperfect. Turkish J. Math. 33, 1–8 (2009).
  • [8] Ding, N., Chen, J.: On a characterization of perfect rings. Comm. Algebra. 27, 785–791 (1999).
  • [9] Enochs, E., Jenda, O.M.G.: Relative Homological Algebra. Berlin-New York: Walter de Gruyter 2000.
  • [10] Hamsher, R. M.: Commutative rings over which every module has a maximal submodule. Proc. Amer. Math. Soc. 18, 1133–1137 (1967).
  • [11] Hausen, J.: Direct projective modules. Bull. Inst. Math. Acad. Sinica. 9, 447–451 (1981).
  • [12] Kasch, F.: Modules and rings. London-New York: London Mathematical Society Monographs, Academic Press 1982.
  • [13] Lam, T. Y.: Lectures on Modules and Rings. New York: Springer-Verlag 1998.
  • [14] Lomp, C.: On semilocal modules and rings. Comm. Algebra. 27, 1921–1935 (1999).
  • [15] Nicholson, W. K., Yousif, M. F.: Quasi–Frobenius Rings. Cambridge: Cambridge University Press 2003.
  • [16] Oneto R., Angel V.: Purity and direct summands. Divulg. Mat. 4, 49–53 (1996).
  • [17] Yousif, M. F., Zhou, Y.: Semiregular, semiperfect and perfect rings relative to an ideal. Proceedings of the Second Honolulu Conference on Abelian Groups and Modules. Rocky Mountain J. Math. 32, 1651–1671 (2002).
  • [18] Zhou, Y.: Generalizations of perfect, semiperfect and semiregular rings. Algebra Colloq. 7, 305–318 (2000).
  • [19] Zimmermann-Huisgen, B.: Pure submodules of direct products of free modules. Math. Ann. 224, 233–245 (1976).