On the Value Set of n! Modulo a Prime
We show that for infinitely many prime numbers p there are at least \log\log p / \log\log\log p distinct residue classes modulo p that are not congruent to n! for any integer n.
On the Value Set of n! Modulo a Prime
We show that for infinitely many prime numbers p there are at least \log\log p / \log\log\log p distinct residue classes modulo p that are not congruent to n! for any integer n.
___
- C. Cobeli, M. Vˆajˆaitu and A. Zaharescu, ‘The sequence n (mod p)’, J. Ramanujan Math. Soc., 15 (2000), 135–154.
- M. Z. Garaev and F. Luca, “Character sums and factorials modulo p”, to appear in J. Theorie Nombres, Bordeaux.
- M. Z. Garaev, F. Luca and I. E. Shparlinski, ‘Character sums and congruences with n ’, Trans. Amer. Math. Soc., (to appear).
- M. Z. Garaev, F. Luca and I. E. Shparlinski, ‘Exponential sums and congruences with factorials’, J. Reine Angew. Math., 356 (2004), 5089-5102.
- R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1994.
- J. C. Lagarias, H. L. Montgomery and A. M. Odlyzko, ‘A bound for the least prime ideal in the Chebotarev density theorem’, Invent. Math., 54 (1979), 271–296.
- F. Luca and P. St˘anic˘a, ‘Products of factorials modulo p’, Colloq. Math., 96 (2003), 191–205.
- D. A. Marcus, Number fields, Springer-Verlag, 1977.
- G. P´olya and G. Szeg¨o, Problems and theorem in analysis, Vol.II , Springer-Verlag, 1976.
- B. Rokowska and A. Schinzel, ‘Sur une probl´eme de M. Erd˝os’, Elem. Math., 15 (1960), 84–85.