On the rank of transformation semigroup T(n,m)

On the rank of transformation semigroup T(n,m)

Let Tn and Sn be the full transformation semigroup and the symmetric group on Xn = {1, . . . , n},respectively. For $n, m ∈ Z+ with m ≤ n − 1 let T(n,m) = {α ∈ Tn : Xmα = Xm}.In this paper we research generating sets and the rank of T(n,m) . In particular, we prove thatrank $(T(n,m)) =   2 if (n, m) = (2, 1) or (3, 2) 3 if (n, m) = (3, 1) or 4 ≤ n and m = n − 14 if 4 ≤ n and 1 ≤ m ≤ n − 2$.for 1 ≤ m ≤ n − 1.

___

  • Ayık G, Ayık H, Bugay L, Kelekci O. Generating sets of finite singular transformation semigroups. Semigroup Forum 2013; 86: 59-66.
  • Garba GU. Idempotents in partial transformation semigroups. Proc R Soc Edinb 1990; 116A: 81-96.
  • Gomes GMS, Howie JM. On the ranks of certain finite semigroups of transformations. Math Proc Camb Philos Soc 1987; 101: 395-403.
  • Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
  • Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups. Proc R Soc Edinb Sect 1990; 114A: 161-167.
  • Sanwong J, Sommanee W. Regularity and Green’s relations on a semigroup of transformations with restricted range. Int J Math Math Sci 2008; 2008: 794013.
  • Sommanee W, Sanwong J. Rank and idempotent rank of finite full transformation semigroups with restricted range. Semigroup Forum 2013; 87: 230-242.
  • Symons JSV. Some results concerning a transformation semigroup. J Aust Math Soc 1975; 19A: 413-425.