On the Generalization of κ-Fractional Hilfer-Katugampola Derivative with Cauchy Problem
On the Generalization of κ-Fractional Hilfer-Katugampola Derivative with Cauchy Problem
We generalize the κ-fractional Hilfer–Katugampola derivative and set some properties of the generalized operator resulting from this. As an application, we demonstrate that the Cauchy problem with this new definition is equivalent to a second kind of Volterra integral equation. We discuss some specific cases for this problem.
___
- [1] Adjabi Y, Jarad F, Baleanu D, Abdeljawad T. On Cauchy problems with Caputo Hadamard fractional derivatives. Journal of Computational Analysis and Applications 2016; 21 (4): 661-681.
- [2] Baleanu D, Diethelm K, Scalas E, Trujillo JJ. Fractional Calculus: Models and Numerical Methods. Singapore: World Scientific, 2012.
- [3] Bhairat SP, Dhaigude DB. Existence and stability of fractional differential equations involving generalized Katugampola derivative. Studia Universitatis Babeș-Bolyai Mathematics 2020; 65 (1): 29-46. doi: 10.24193/subbmath.2020.1.03
- [4] Bohner M, Rahman G, Mubeen S, Nisar K. A further extension of the extended Riemann-Liouville fractional derivative operator. Turkish Journal of Mathematics 2018; 42 (5): 2631-2642.
- [5] Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications 2015; 1 (2): 73-85.
- [6] De Oliveira EC, Tenreiro Machado JA. A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering 2014. doi: 10.1155/2014/238459
- [7] Dhaigude DB, Bhairat SP. Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations. Communications in Applied Analysis 2018; 1 (22): 121-134. doi: 10.12732/caa.v22i1.8
- [8] Diaz R, Pariguan E. On hypergeometric functions and Pochhammer k -symbol. Divulgaciones Matematicas 2007; 15 (2): 179-192.
- [9] Dorrego GA, Cerutti RA. The k -Mittag-Leffler function. International journal of Contempoary Mathematical Sciences 2012; 7 (15): 705-716.
- [10] Dorrego GA. An alternative definition for the k -Riemann-Liouville Fractional Derivative. Applied Mathematical Sciences 2015; 9 (10): 481-491. doi: 10.12988/ams.2015.411893
- [11] Dorrego GA, Cerutti RA. The k -fractional Hilfer derivative. International Journal of Mathematical Analysis 2013; 7 (11): 543-550.
- [12] Gupta AN, Parihar CL. k -New generalized Mittag-Leffler function. Fractional Calculus and Applied Analysis 2014; 165-176.
- [13] Jarad F, Abdeljawad T, Baleanu D. On the generalized fractional derivatives and their Caputo modification. Journal of Nonlinear Sciences and Applications 2017; 10 (5): 2607-2619.
- [14] Katugampola UN. New approach to a generalized fractional integral. Applied Mathematics and Computation 2011; 218 (3): 860-865.
- [15] Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. Journal of Computational and Applied Mathematics 2014; 264: 65-70.
- [16] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier, 2006.
- [17] Kilbas AA, Saigo M, Saxena RK. Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels. The Journal of Integral Equations and Applications 2002: 377-396.
- [18] Losada J, Nieto JJ. Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications 2015; 1 (2): 87-92.
- [19] Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models. Singapore: World Scientific, 2010.
- [20] Nisar KS, Rahman G, Baleanu D, Mubeen S, Arshad M. The (k, s)-fractional calculus of k -Mittag-Leffler function. Advances in Difference Equations 2017; 118 (2017). doi: 10.1186/s13662-017-1176-4
- [21] Nisar KS, Rahman G, Tomovski Z. On a certain extension of the Riemann-Liouville fractional derivative operator. Korean Mathematical Society 2019; 34 (2): 507–522. doi: 10.4134/CKMS.C180140
- [22] Oliveira DS, D Oliveira EC. Hilfer–Katugampola fractional derivatives. Computational and Applied Mathematics 2018; 37 (3): 3672-3690.
- [23] Rahman G, Nisar KS, Mubeen S. A new extension of extended Caputo fractional derivative operator. Mathematics in Engineering Science and Aerospace 2020; 11 (2): 399-413.
- [24] Rahman G, Mubeen S, Choi J. Certain extended special functions and fractional integral and derivative operators via an extended beta function. Nonlinear Functional Analysis and Application 2019; 24 (1): 1-13.
- [25] Rahman G, Nisar KS, Mubeen S. On generalized k -fractional derivative operator. AIMS Mathematics 2020; 5 (3): 1936-1945. doi: 10.3934/math.2020129
- [26] Salahshour S, Ahmadian A, Abbasbandy S, Baleanu D. M -fractional derivative under interval uncertainty: theory, properties and applications. Chaos, Solitons & Fractals 2018; 117: 84-93. doi: 10.1016/j.chaos.2018.10.002
- [27] Sarikaya MZ, Dahmani Z, KIRIS ME, Ahmad F. (k, s)-Riemann-Liouville fractional integral and applications. Hacettepe Journal of Mathematics and Statistics 2016; 45 (1): 77-89.
- [28] Subashini R, Jothimani K, Nisar KS, Ravichandran C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alexandria Engineering Journal 2020; 59 (5): 2891-2899. doi: 10.1016/j.aej.2020.01.055
- [29] Yang XJ, Srivastava HM, Machado JA. A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Thermal Science 2016; 20 (2): 753-756.