On strongly Ozaki bi-close-to-convex functions

On strongly Ozaki bi-close-to-convex functions

In this paper, we introduce and investigate a new subclass of strongly Ozaki bi-close-to-convex functions inthe open unit disk. We have also found estimates for the first two Taylor–Maclaurin coefficients for functions belongingto this class. The results presented in this paper have been shown to generalize and improve the work of Brannan andTaha.

___

  • [1] Ali RM, Lee SK, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters 2012; 25: 344-351.
  • [2] Allu V, Thomas DK, Tuneski N. On Ozaki close-to-convex functions. Bulletin of the Australian Mathematical Society 2019; 99: 89-100. doi: 10.1017/S0004972718000989
  • [3] Brannan DA, Kirwan WE. On some classes of bounded univalent functions. Journal of the London Mathematical Society 1969; 2: 431–443.
  • [4] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Mazhar SM, Hamoui A, Faour NS (editors). KFAS Proceedings Series, Vol. 3. Oxford, UK: Pergamon Press, 1988, pp. 53-60.
  • [5] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften. New York, NY, USA: Springer- Verlag, 1983.
  • [6] Goodman AW. Univalent Functions. New York, NY, USA: Mariner Publishing Company, 1983.
  • [7] Kaplan W. Close-to-convex schlicht functions. Michigan Math J 1952; 1 (2): 169-185.
  • [8] Kargar R, Ebadian A. Ozaki’s conditions for general integral operator. Sahand Communications in Mathematical Analysis 2017; 5 (1): 61-67.
  • [9] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
  • [10] Ozaki S. On the theory of multivalent functions. Science Reports of the Tokyo Bunrika Daigaku Section A 1935; 2 (40): 167-188.
  • [11] Ozaki S. On the theory of multivalent functions II. Science Reports of the Tokyo Bunrika Daigaku Section A 1941; 4 (77/78): 45-87.
  • [12] Pommerenke C. Univalent Functions. Göttingen, Germany: Vandenhoeck Ruprecht, 1975.
  • [13] Ponnusamy S, Sahoo SK, Yanagihara H. Radius of convexity of partial sums of functions in the close-to-convex family. Nonlinear Analysis 2014; 95: 219–228.
  • [14] Rudin W. Real and Complex Analysis. 3rd ed. New York, NY, USA: McGraw-Hill Education, 1998.
  • [15] Srivastava HM. Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions. In: Pardalos PM, Georgiev PG, Srivastava HM (editors). Nonlinear Analysis: Stability, Approximation, and Inequalities. Springer Series on Optimization and Its Applications, Vol. 68. Berlin, Germany: Springer-Verlag, 2012, pp. 607-630.
  • [16] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Lett 2010; 23: 1188-1192.
  • [17] Srivastava HM, Sümer Eker S, Ali RM. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015; 29: 1839-1845.
  • [18] Stankiewicz J. Quelques problemes extremaux dansles classes des fonctions - angulairement etoilees. Ann Univ Mariae Curie-Skłodowska Sect A 1966; 20: 59–75 (in French).
  • [19] Sümer Eker S. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk J Math 2016; 40: 641-646.
  • [20] Taha TS. Topics in univalent function theory. PhD, University of London, London, UK, 1981.
  • [21] Thomas D, Tuneski N, Vasudevarao A. Univalent Functions. A Primer. Berlin, Germany: De Gruyter, 2018.