On Hilbert genus fields of imaginary cyclic quartic fields

On Hilbert genus fields of imaginary cyclic quartic fields

Let p be a prime number such that p = 2 or p ≡ 1 (mod 4). Let εp denote the fundamental unit of Q( √ p) and let a be a positive square-free integer. The main aim of this paper is to determine explicitly the Hilbert genus field of the imaginary cyclic quartic fields of the form Q( √ −aεp √ p) .

___

  • [1] Azizi A, Talbi M. Structure du groupe de Galois pour certains corps de classes. International Journal of Algebra 2010; 4 (23): 1127-1136 (in French).
  • [2] Azizi A, Taous M. Capitulation des 2-classes d’idéaux de k = Q( √ 2p, i) . Acta Arithmetica 2008; 131: 103-123 (in French).
  • [3] Bae S, Yue Q. Hilbert genus fields of real biquadratic fields. The Ramanujan Journal 2011; 24 (2): 161-181.
  • [4] Chems-Eddin MM, Zekhnini A, Azizi A. Units and 2-class field towers of some multiquadratic number fields. Turkish Journal of Mathematics 2020; 44 (4): 1466-1483.
  • [5] Chems-Eddin MM, Azizi A, Zekhnini A, Jerrari I. On the Hilbert 2-class field tower of some imaginary biquadratic number fields. Czechoslovak Mathematical Journal 2021; 71 (1): 269-281.
  • [6] Cohn H. The explicit Hilbert 2-cyclic class field for Q( √ −p) . Journal Für Mathematik, 1980; 321: 64-77.
  • [7] Gras G. Class Field Theory, From Theory to Practice. Heidelberg, Germany: Springer, 2003.
  • [8] Gras G. Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré premier l. Annales de l’institut Fourier (Grenoble) 1973; 23: 1-48 (in French).
  • [9] Hardy H, Hudson RH, Richman D, Williams KS, Holtz NM. Calculation of the class numbers of imaginary cyclic quartic fields. Mathematics of Computation 1987; 49 (180): 615-620.
  • [10] Hergoltz G. Über einen Dirichletschen Satz. Mathematische Zeitschrift 1922; 12: 225-261 (in German).
  • [11] Hilbert D. Über die theorie der relativquadratischen Zahelkörper. Mathematische Annalen 1899; 51: 1-127 (in German).
  • [12] Huard JG, Spearman BK, Williams KS. Integral bases for quartic fields with quadratic subfields. Journal of Number Theory 1995; 51 (1): 87-102.
  • [13] Ishida M. The genus fields of algebraic number fields. Lecture Notes in Mathematics 555. Heidelberg, Germany: Springer-Verlag, 1976.
  • [14] Janusz G. Algebraic Number Fields. San Diego, CA, USA: Academic press, 1973.
  • [15] Kisilevsky H. Number fields with class number congruent to 4 (mod 8) and Hilbert’s theorem 94. Journal of Number Theory 1976; 8 (3): 271-279.
  • [16] Lemmermeyer F. Reciprocity laws, from Euler to Eisenstein. Springer Monographs in Mathematics. Berlin, Germany: Springer-Verlag, 2000.
  • [17] Leonard PA, Williams KS. On the divisibility of the class numbers of Q( √ −p) and Q( √ −2p) by 16. Canadian Mathematical Bulletin 1982; 25 (2): 200-206.
  • [18] Neukirch J. Class Field Theory. Berlin, Germany: Springer, 1990.
  • [19] Ouyang Y, Zhang Z. Hilbert genus fields of biquadratic fields. Science China Mathematics 2014; 57 (10): 2111-2122.
  • [20] Ouyang Y, Zhang Z. Hilbert genus fields of biquadratic fields. The Ramanujan Journal 2015; 37 (2): 345-363.
  • [21] Sime PJ. Hilbert Class Fields of Real Biquadratic Fields. Journal of Number Theory 1995; 50 (1): 154-166.
  • [22] Williams KS. On Scholz’s reciprocity law. Proceedings of the American Mathematical Society 1977; 64: 45-46.
  • [23] Yue Q. Genus fields of real biquadratic fields. The Ramanujan Journal 2010; 21 (1): 17-25.
  • [24] Zitouni M. Quelques propriétés des corps cycliques de degré 4 . Seminaire Delange-Pisot-Poitou, théorie des nombres, Fasc. 1, Exp. No. 4, 8 pp. Secrétariat Mathématique, Paris, 1973 (in French).