On a class of generalized Humbert–Hermite polynomials via generalized Fibonacci polynomials

On a class of generalized Humbert–Hermite polynomials via generalized Fibonacci polynomials

A unified presentation of a class of Humbert’s polynomials in two variables which generalizes the well known class of Gegenbauer, Humbert, Legendre, Chebycheff, Pincherle, Horadam, Kinney, Horadam–Pethe, Djordjević, Gould, Milovanovic and Djordjevi c, Pathan and Khan polynomials and many not so called ’named’ polynomials has inspired the present paper. We define here generalized Humbert–Hermite polynomials of two variables. Several expansions of Humbert-Hermite polynomials, Hermite–Gegenbaurer (or ultraspherical) polynomials and Hermite–Chebyshev polynomials are proved.

___

  • [1] Andrews LC. Special functions for engineers and mathematicians, Macmillan Co., New York, 1985.
  • [2] Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Reprint of the 1972 edition, Dover Publications, Inc., New York, 1992.
  • [3] Agarwal R, Parihar HS. On certain generalized polynomial system associated with Humbert polynomials. Scientia. Series A. Mathematical Sciences. New Series 2012; 23: 31-44.
  • [4] Batahan RS, Shehata A. Hermite-Chebyshev polynomials with their generalization form. Journal of Mathematical Sciences: Advances and Applications 2014; 29: 47-59.
  • [5] Bell ET. Exponential polynomials. Annals of Mathematics Second Series 1934; 35: 258-277.
  • [6] Cheon G-S, Kim H, Shapiro LW. A generalization of Lucas polynomials sequence. Discrete Applied Mathematics 2009; 157: 920-927.
  • [7] Comtet L. Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
  • [8] Dave CK. Another generalization of Gegenbauer polynomials. The Journal of the Indian Academy of Mathematics 1978; 2: 42-45.
  • [9] Dattoli G, Chiccoli C, Lorenzutta S, Maimo G, Torre A. Generalized Bessel functions and generalized Hermite polynomials. Journal of Mathematical Analysis and Applications 1993; 178: 509-516.
  • [10] Dattoli G, Maimo G, Torre A, Cesarano C. Generalized Hermite polynomials and super-Gaussian forms. Journal of Mathematical Analysis and Applications 1996; 233: 597-609.
  • [11] Dattoli G, Lorenzutta S, Cesarano C. Finite sums and generalized forms of Bernoulli polynomials. Rendiconti di Mathematica 1999; 19: 385-391.
  • [12] Dattoli G, Torre A, Lorenzutta S. Operational identities and properties of ordinary and generalized special functions. Journal of Mathematical Analysis and Applications 1999; 236: 399-414.
  • [13] Dilcher K. A generalization of Fibonacci polynomials and a representation of Gagenbauer polynomials of integer order. The Fibonacci Quarterly 1987; 25: 300-303.
  • [14] Djorjević GB. A generalization of Gegenbauer polynomial with two variables. (To appear in Indian Journal of Pure and Applied Mathematics).
  • [15] Djorjević GB. Generalized Jacobsthal polynomials. The Fibonacci Quarterly 2000; 38: 239-243.
  • [16] Djorjević GB. Mixed convolutions of the Jacobsthal type. Applied Mathematics and Computation 2007; 186: 646- 651.
  • [17] Djorjević GB. Mixed Fermat convolutions. The Fibonacci Quarterly 1993; 31: 152-157.
  • [18] Djorjević GB. Polynomials related to generalized Chebyshev polynomials. Filomat 2009; 23: 279-290.
  • [19] Djorjević GB, Djordjevic SS. Convolutions of the generalized Morgan-Voyce polynomials. Applied Mathematics and Computation 2015; 259: 106-115.
  • [20] Djorjević GB, Srivastava HM. Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers. Mathematical and Computer Modelling 2005; 42: 1049-1056.
  • [21] Djorjević GB, Milovanović GV. Special classes of polynomials. University of Niš, Faculty of Technology, Leskovac, 2014.
  • [22] Dere R, Simsek D, Hermite base Bernoulli type polynomials on the umbral algebra. Russian Jornal of Mathematics 2015; 22(1): 1-5.
  • [23] Gould HW. Inverse series relation and other expansions involving Humbert polynomials. Duke Mathematical Journal 1965; 32: 697-711.
  • [24] Gould HW, Hooper AT. Operational formulas connected with two generalizations of Hermite polynomials. Duke Mathematical Journal 1962; 29: 51-63.
  • [25] He T-X, Shiue PJ-S. On sequences of numbers and polynomials defined by linear recurrence relations of order 2, International Journal of Mathematics and Mathematical Sciences 2009; Art ID 709386: 21pp.
  • [26] He T-X, Shiue PJ-S. Sequences of non-Gegenbauer-Humbert polynomials meet the generalized GegenebauerHumbert polynomials. ISRN Algebra 2011; Art ID 268096, 18pp.
  • [27] Hoggatt VE. Convolution triangles for generalized Fibonacci numbers. The Fibonacci Quarterly 1970; 8: 158-171.
  • [28] Horadam AF. A synthesis of certain polynomial sequences, Applications of Fibonacci numbers, Vol. 6 (Pullman WA, 1994), 215-229, Kluwer Acad. Publ., Dordrecht, 1996.
  • [29] Horadam AF. Chebyshev and Fermat polynomials for diagonal functions. The Fibonacci Quarterly 1979; 17: 328- 333.
  • [30] Horadam AF, Mahon JM. Convolutions for Pell polynomials, Fibonacci Numbers and their Applications (Patras), Mathematical Applications 1984; 28: 55-80, Reidel, Dordrecht, 1986.
  • [31] Horadam AF, Mahon JM. Mixed Pell polynomials. The Fibonacci Quarterly 1987; 25: 291-299.
  • [32] Horadam AF, Pethe S. Polynomials associated with Gegenbauer polynomials. The Fibonacci Quarterly 1981; 19: 393-398.
  • [33] Horadam AF. Gegenbauer polynomials revisited. The Fibonacci Quarterly 1985; 23: 295-299.
  • [34] Horadam AF, Pethe S. Polynomials associated with Gegenbauer polynomials. The Fibonacci Quarterly 1981; 19: 393-398.
  • [35] Hsu LC. On Stirling-type pairs and extended Gegenbauer-Humbert-Fibonacci polynomials. Applications of Fibonacci Numbers 1992; 5 (St. Andrews): 367-377, Kluwer Acad. Publ., Dordrecht, 1993.
  • [36] Hsu LC, Shiue PJ-S. Cycle indicators and special functions. Annals of Combinatorics 2001; 5: 179-196.
  • [37] Humbert P. Some extensions of Pincherle’s polynomials. Proceedings of the Edinburgh Mathematical Society 1920; 39: 21-24.
  • [38] Jacobson N. Basic Algebra. I. Second edition, W.H. Freeman and Company, New York, 1985.
  • [39] Kruchinin DV, Kruchinin VV. Explicit formulas for some generalized polynomials. Applied Mathematics & Information Sciences 2013; 7: 2083-2088.
  • [40] Kilar N, Simsek Y. Computational formulas and identities for new classes of Hermite based Milne-Thomson type polynomials: Analysis of generating functions with Euler’s formula. Mathathematical Method amd Applied Sciences: 2021; 44: 6731-6762.
  • [41] Khan WA, Pathan MA. On a class of Humbert-Hermite polynomials. Novi Sad Journal of Mathematics 2021; 51: 1-11.
  • [42] Lee G, Asci M. Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials. Journal of Applied Mathematics 2012; Art ID 264842, 18pp.
  • [43] Liu G. Formulas for convolution Fibonacci numbers and polynomials. The Fibonacci Quarterly 2002; 40: 352-357.
  • [44] Ma S-M. Identities involving generalized Fibonacci-type polynomials. Applied Mathematics and Computation 2011; 217: 9297-9301.
  • [45] Milovanović GV, Djordjević GB. On some properties of Humbert’s polynomials. The Fibonacci Quarterly 1987; 25: 356-360.
  • [46] Nalli A, Haukkanen P. On generalized Fibonacci and Lucas polynomials. Chaos, Solitons and Fractals 2009; 42: 3179-3186.
  • [47] Olver FWJ, Lozier DW, Boisvert RF, Clark(Eds.) CW. NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge, 2010.
  • [48] Ozdemir G, Simsek Y, Milovanović GV. Generating functions for special polynomials and numbers including Apostol-type and Humbert-type polynomials. Mediterranean Journal of Mathematics 2017; 14:17. doi: 10.1007/s00009-017-0918-6.
  • [49] Pathan MA, Khan MA. On polynomials associated with Humbert’s polynomials. Publications de l’Institut Mathématique 1997; 62: 53-62.
  • [50] Pathan MA, Khan NU. A unified presentation of a class of generalized Humberts polynomials of two variables. ROMAI Journal 2015; 11: 185-199.
  • [51] Pathan MA, Khan WA. On h(x)-Euler-Fibonacci and h(x)-Euler-Lucas numbers and polynomials. Acta Universitatis Apulensis 2019; 28: 117-133.
  • [52] Ramírez JL. On convolved generalized Fibonacci and Lucas polynomials. Applied Mathematics and Computation 2014; 229: 208-213.
  • [53] Ramírez JL. Some properties of convolved k -Fibonacci numbers. ISRN Combine 2013; Art. ID 759641: 5pp. .
  • [54] Shrestha NB. Polynomial associated with Legendre polynomials. The Nepali Mathematical Sciences Report 1977; 2:1.
  • [55] Sinha S. K. On a polynomial associated with Gegenbauer polynomials. Proceedings of the National Academy of Sciences, India 1989; 59: 439-455.
  • [56] Simsek Y. Formulas for Poisson-Charlier, Hermite, Milne-Thomson and other type polynomials by their generating functions and p-adic integral approach RACSAM; 2019; 113: 931-948.
  • [57] Wang J. Some new results for the (p, q)-Fibonacci and Lucas polynomials. Advances in Difference Equations 2014; 2014:64, 15pp.
  • [58] Wang W, Wang H. Some results on convolved (p, q)-Fibonacci polynomials. Integral Transforms and Special Functions 2015; 26: 340-356.
  • [59] Wang W, Wang H. Generalized Humbert polynomials via generalized Fibonacci polynomials. Applied Mathematics and Computation 2017; 307: 204-216.