Multiplicative conformable fractional Dirac system

Multiplicative conformable fractional Dirac system

In multiplicative fractional calculus, the well-known Dirac system in fractional calculus is redefined. The aim of this study is to analyze some spectral properties such as self-adjointness of the operator, structure of all eigenvalues, orthogonality of distinct eigenfunctions, etc. for this system. Moreover, Green’s function in multiplicative case is reconstructed for this system.

___

  • [1] Abdeljawad T. On conformable fractional calculus. Journal of Computational and Applied Mathematics 2015; 276:57-66.
  • [2] Abdeljawad T, Grossman M. On geometric fractional calculus. Journal of Semigroup Theory and Applications 2016;2016 (2): 1-14.
  • [3] Allahverdiev BP, Tuna H. One‐dimensional qDirac equation. Mathematical Methods in the Applied Sciences 2017;40 (18): 7287-7306.
  • [4] Allahverdiev BP, Tuna H. One-dimensional conformable fractional Dirac system. Boletín de la Sociedad Matemática Mexicana 2020; 26 (1): 121–146.
  • [5] Aniszewska D. Multiplicative Runge–Kutta methods. Nonlinear Dynamics 2007; 50 (1-2): 265-272. [6] Aniszewska D, Rybaczuk M. Chaos in multiplicative systems. Chaotic Systems: Theory and Applications 2010; 2010: 9-16.
  • [7] Atangana A, Baleanu D, Alsaedi A. New properties of conformable derivative. Open Mathematics 2015; 13 (1): 889-898.
  • [8] Bairamov E, Aygar Y, Olgun M. Jost solution and the spectrum of the discrete Dirac systems. Boundary Value Problems 2010; 2010(Article ID 306571): 1-11.
  • [9] Bashirov AE, Bashirova G. Dynamics of literary texts and diffusion. Online Journal of Communication and Media Technologies 2011; 1 (3): 60-82.
  • [10] Bashirov AE, Kurpinar EM, Ozyapici A. Multiplicative calculus and its applications. Journal of Mathematical Analysis and Applications 2008; 337 (1): 36-48.
  • [11] Bashirov AE, Riza M. On complex multiplicative differentiation. TWMS Journal on Applied and Engineering Mathematics 2011; 1 (1): 75-85.
  • [12] Bashirov AE, Misirli E, Tandogdu Y, Ozyapici A. On modeling with multiplicative differential equations. Applied Mathematics-A Journal of Chinese Universities 2011; 26 (4): 425-438.
  • [13] Baleanu D, Guvenc ZB, Machado JAT. New trends in nanotechnology and fractional calculus applications, New York (NY): Springer, 2010.
  • [14] Benford A. The Law of anomalous numbers. Proceedings of the American Philosophical Society 1938; 78 (4): 551-572.
  • [15] Benkhettou N, da Cruz AMB, Torres DFM. A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration. Signal Processing 2015; 107: 230-237.
  • [16] Benkhettou N, Hassani S, Torres DFM. A conformable fractional calculus on arbitrary time scales. Journal of King Saud University-Science 2016; 28 (1): 93-98.
  • [17] Boruah K, Hazarika B. G-Calculus. TWMS Journal of Applied and Engineering Mathematics 2018; 8 (1): 94-105.
  • [18] Cheng M, Jiang Z. A new class of production function model and its application. Journal of Systems Science and Information 2016; 4 (2): 177-185.
  • [19] Çöl A, Mamedov KhR. On an inverse scattering problem for a class of Dirac operators with spectral parameter in the boundary condition. Journal of Mathematical Analysis and Applications 2012; 393 (2): 470-478.
  • [20] Dirac PAM. The quantum theory of the electron. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1928; 117 (778): 610-624.
  • [21] Filip D, Piatecki C. A non-newtonian examination of the theory of exogenous economic growth. Mathematica Aeterna 2014; 4 (2): 101-117.
  • [22] Florack L, Assen Hv. Multiplicative calculus in biomedical image analysis. Journal of Mathematical Imaging and Vision 2012; 42 (1): 64-75.
  • [23] Gasymov MG, Levitan BM. The inverse problem for the Dirac system. Doklady Akademy Nauk SSSR 1966; 16 7 (5): 967-970.
  • [24] Goktas S, Yilmaz E, Yar AC. Multiplicative derivative and its basic properties on time scales. Mathematical Methods in the Applied Science 2022; 45: 2097-2109.
  • [25] Grossman M. An introduction to Non-Newtonian calculus. International Journal of Mathematical Education in Science and Technology 1979; 10 (4): 525–528.
  • [26] Grossman M, Katz R. Non-Newtonian calculus, Pigeon Cove, MA: Lee Press, 1972.
  • [27] Gulsen T, Yilmaz E, Goktas S. Conformable fractional Dirac system on time scales. Journal of inequalities and applications 2017; 2017 (1): 1-10.
  • [28] Gulsen T, Yilmaz E, Goktas S, Multiplicative Dirac System. Kuwait Journal of Science 2022. doi:10.48129/kjs.13411
  • [29] Gurefe Y. Multiplicative differential equations and its applications. Ph.D. Thesis, 2013; Ege University, pp.91.
  • [30] Joa I, Minkin A. Eigenfunction estimate for a Dirac operator. Acta Mathematica Hungarica 1997; 76 (4): 337-349.
  • [31] Kadak U, Gurefe Y. A generalization on weighted means and convex functions with respect to the Non-Newtonian calculus. International Journal of Analysis 2016; 2016 (Article ID 5416751): 1-9.
  • [32] Keskin B, Ozkan AS. Inverse spectral problems for Dirac operator with eigenvalue dependent boundary and jump conditions. Acta Mathematica Hungarica 2011; 130 (4): 309-320.
  • [33] Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. Journal of computational and applied mathematics 2014; 264: 65-70.
  • [34] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations (Vol. 204), Elsevier, 2006.
  • [35] Levitan BM, Sargsjan IS. Sturm-Liouville and Dirac operators, Moscow: Nauka, 1991.
  • [36] Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in nonlinear science and numerical simulation 2011; 16 (3): 1140-1153.
  • [37] Miller KS. An introduction to fractional calculus and fractional differential equations. New York (NY): J Wiley and Sons, 1993.
  • [38] Muslih SI, Agrawal OP, Baleanu D. A fractional Dirac equation and its solution. Journal of Physics A: Mathematical and Theoretical 2010; 43 (5):055203.
  • [39] Oldham KB, Spanier J. The Fractional Calculus. New York (NY): Academic Press, 1974.
  • [40] Ortigueira MD, Machado JAT. What is a fractional derivative? Journal of computational Physics 2015; 293: 4-13.
  • [41] Özyapıcı H, Dalcı İ, Özyapıcı A. Integrating accounting and multiplicative calculus: an effective estimation of learning curve. Computational and Mathematical Organization Theory 2017; 23 (2): 258-270.
  • [42] Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999.
  • [43] Stanley DA. A multiplicative calculus. Primus IX 1999; 9 (4): 310-326.
  • [44] Tikhonov AN, Samarskii AA. Equations of mathematical physics. Oxford Pergamon Press, New York, 1963.
  • [45] Wang Y, Zhou J, Li Y. Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales. Advances in Mathematical Physics 2016; 2016 Article ID 9636491: 1-21.
  • [46] Yalcin N. The solutions of multiplicative Hermite diferential equation and multiplicative Hermite polynomials. Rendiconti del Circolo Matematico di Palermo Series 2 2021; 70: 9-21.
  • [47] Yalcin N, Celik E, Gokdogan A. Multiplicative Laplace transform and its applications. Optik 2016; 127: 9984-9995.
  • [48] Yalcin N, Celik E. Solution of multiplicative homogeneous linear differential equations with constant exponentials. New Trends in Mathematical Sciences 2018; 6 (2): 58-67.
  • [49] Yalcin N, Dedeturk M. Solutions of multiplicative ordinary differential equations via the multiplicative differential transform method. AIMS Mathematics 2021; 6 (4): 3393-3409.
  • [50] Yilmaz E. Multiplicative Bessel equation and its spectral properties. Ricerche di Matematica 2021. doi: 10.1007/s11587-021-00674-1