Local Fourier bases and modulation spaces $M^w_{p,q}$
Local Fourier bases and modulation spaces $M^w_{p,q}$
It is shown that local Fourier bases are unconditional bases for modulation spaces. We prove first a version of the Schur test for double sequence with mixed norm and then use it to show boundedness of the analysis operator on the modulation space $M^w_{p,q}$
___
- [1] Auscher, P.: Remarks on the local Fourier bases. In Wavelets: Mathematics and Applications,J. Benedetto and M. Frazier, eds., pp. 203 - 218, CRC Press, Boca Raton, 1994. [2] Auscher, P., Weiss, G., Wickerhauser, M.: Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. In Wavelets: A Tutorial in Theory and Applications, C. K. Chui, ed., pp. 237-256, Academic Press, San Diego, 1992. [3] Benedeck, A., Panzone, R.: The spaces Lp with mixed norm, Duke. Math. J. 23, 301-324 (1961). [4] Coifman, R., Meyer, Y.: Remarques sur l'analyse de Fourier a fenetre, serie I, C. R. Acad. Sci. Paris 312, 259-261 (1991). [5] Daubechies, I., Jaffard, S., Journe, J.: A simple Wilson orthonormal basis with exponential decay. SIAM J. Math. Anal. 22, 554-572 (1991). [6] Donoho, D.: Unconditional bases are optimal bases for data compression and for statistical estimation, Applied and Computation Harmonic Analysis 1, 100-115 (1993). [7] Feichtinger, H.G.: Atomic characterizations of modulation spaces through Gabor-type representations, Proc. Conf "Constructive Function Theory", Edmonton, July 1986, Rocky Mount. J. Math. 19, 113-126 (1989). [8] Feichtinger, H.G.: On a new Segal algebra, Monatsh. Math. 92, 269-289 (1981). [9] Feichtinger, H.G.: Banach convolution algebras of Wiener type. In Proc. Conf. Functions, Series, Operators, Budapest, Colloquia Math. Soc. J. Bolyai, pages 509-524, Amsterdam-Oxford-New York, North Holland 1980. [10] Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical report, University of Vienna 1983. [11] Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions, I, J. Func. Anal. 86, 307-340 (1989). [12] Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math. 108, 129-148 (1989). [13] Feichtinger, H.G., Gr¨ochenig, K.: Non-orthogonal Wavelet and Gabor Expansions, and Group Representations. In "Wavelets and their Applications", Ruskai, M.B., et al., eds, pp. 353-376, Jones and Bartlett, Boston, [14] Feichtinger, H.G., Gr¨ochenig, K.: Gabor Wavelets and the Heisenberg Group: Gabor expansions and Short Time Fourier Transform from the Group Theoretical Point of View, In "Wavelets- A Tutorial in Theory and Applications", C. K. Chui, ed., Academic Press, (1992). [15] Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic characterization via integrable group representations. In Proc. Conf. Lund June 1986, lect. Notes in Math. 1302, pages 53-73 (1988). MR 89h 46035 (M. Milman, introduction), 1988. [16] Feichtinger, H.G.: K. Gröchenig, D.Walnut, Wilson basis and modulation spaces. Math. Nachr. 155, 7-17 (1992). [17] Gr¨ochenig, K.: Describing Functions : Atomic decompositions versus frames, Monatsh. Math. 112, 1-42 (1991). [18] Samarah, S.: Modulation Spaces and Non-linear Approximation. Ph.D thesis, University of Connecticut, (1998). [19] Gröchenig, K., Samarah, S.: Nonlinear approximation with local Fourier bases, Const. Approx. 16, 317-331 (2000). [20] Galperin, Y.V., Samarah, S.: Time-frequency analysis and modulation spaces $M^w_{p,q}$ Appl. Comput. Harmon. Anal. 16, 1-18 (2004).