Jörgensen’s inequality and purely loxodromic two-generator free Kleinian groups

Jörgensen’s inequality and purely loxodromic two-generator free Kleinian groups

Let ξ and η be two noncommuting isometries of the hyperbolic 3 -space H3 so that Γ = ⟨ξ, η⟩ is a purely loxodromic free Kleinian group. For γ ∈ Γ and z ∈ H3 , let dγ z denote the hyperbolic distance between z and γ(z) . Let z1 and z2 be the midpoints of the shortest geodesic segments connecting the axis of ξ to the axes of ηξη−1 and η−1ξη , respectively. In this manuscript, it is proved that if dγ z2 < 1.6068... for every γ ∈ {η, ξ−1ηξ, ξηξ−1} and dηξη−1 z2 ≤ dηξη−1 z1 , then |trace2(ξ) − 4| + |trace(ξηξ−1η−1) − 2| ≥ 2 sinh2 1 log α = 1.5937.... Above α = 24.8692...is the unique real root of the polynomial 21x4 − 496x3 − 654x2 + 24x + 81 that is greater than 9 . Generalizations of this inequality for finitely generated purely loxodromic free Kleinian groups are also proposed.

___

  • [1] Beardon AF. The Geometry of Discrete Groups. Berlin, Germany: Springer-Verlag, 1983.
  • [2] Canary RD, Culler M, Hersonsky S, Shalen PB. Approximation by maximal cusps in boundaries of deformation spaces of Kleinian groups. J Differential Geom 2003; 64: 57-109.
  • [3] Canary RD, Hersonsky S. Ubiquity of geometric finiteness in boundaries of deformation spaces of hyperbolic 3- manifolds. Am J Math 2004; 126: 1193-1220.
  • [4] Culler M, Shalen PB. Paradoxical decompositions, 2-generator Kleinian groups, and volumes of hyperbolic 3- manifolds. J Am Math Soc 1992; 5: 231-288.
  • [5] Culler M, Shalen PB. Margulis numbers For Haken manifolds. Israel J Math 2012; 190: 445-475.
  • [6] Gabai D, Meyerhoff R, Milley P. Minimum volume cusped hyperbolic three-manifolds. J Am Math Soc 2011; 22: 145-118.
  • [7] Gehring F, Gilman J, Martin G. Kleinian groups with real parameters. Commun Contemp Math 2001; 3: 163-186.
  • [8] Gilman J. Two-generator discrete subgroups of PSL(2;R) . Mem Am Math Soc 1995; 117: 561.
  • [9] Gilman J. Algorithms, complexity and discreteness criteria in PSL(2;C) . J Anal Math 1997; 73: 91-114.
  • [10] Gilman, J, Keen L. Discreteness criteria and the hyperbolic geometry of palindromes. Conform Geom Dyn 2009; 13: 76-90.
  • [11] Gilman J, Maskit B. An algorithm for two-generator discrete groups. Michigan Math J 1991; 38: 13-32.
  • [12] Jörgensen T. On discrete groups of Möbius transformations. Am J Math 1976; 98: 739-749.
  • [13] Maskit B. Kleinian Groups. Berlin, Germany: Springer-Verlag, 1987.
  • [14] Matelski J. The classification of discrete 2-generator subgroups of PSL(2,R). Israel J Math 1992; 42: 309-317.
  • [15] Milley P. Minimum volume hyperbolic 3-manifolds. J Topol 2009; 2: 181-192.
  • [16] Mostow GD. Strong rigidity of locally symmetric spaces. Princeton, NJ, USA: Princeton University Press, 1973.
  • [17] Rosenberger G. All generating pairs of all two-generator Fuchsian groups. Arch Math 1986; 46: 198-204.
  • [18] Yüce İS. Two-generator free Kleinian groups and hyperbolic displacements. Alg Geo Top 2014; 14: 3141-3184.
  • [19] Yüce İS. Symmetric decompositions of free Kleinian groups and hyperbolic displacements. Commun Anal Geom (in press).