Academic Researches Index
EN
Dergiler Duyurular İstatistikler Standartlar Hakkımızda İletişim
  1. Turkish Journal of Mathematics
  2. Arşiv
  3. 2019
  4. Cilt: 43 - Sayı: 2
  5. 813 -832
İsmail SAĞLAM

9296

Complete flat cone metrics on punctured surfaces

We prove that each complete flat cone metric on a surface with regular or irregular punctures can be triangulated with finitely many types of triangles. We derive the Gauss-Bonnet formula for this kind of cone metrics. In addition, we prove that each free homotopy class of paths has a geodesic representative.
Keywords:

Flat metric, the Gauss-Bonnet formula, surfaces with punctures the Hopf-Rinow theorem,

PDF
Turkish Journal of Mathematics-Cover
  • ISSN: 1300-0098
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Arşiv
Sayıdaki Diğer Makaleler

Mohammad SHAHRIARI

Singly generated invariant subspaces in the Hardy space on the unit ball

Nazım SADIK, Beyaz Başak KOCA

Inverse problem for Sturm–Liouville differential operators with two constant delays

Mohammad SHAHRIARI

Study on the existence of solutions to two specific types of differential-difference equations

Qiong WANG, Qiongyan WANG

Exponential stabilization of a neutrally delayed viscoelastic Timoshenko beam

Sebti KERBAL, Nasser Eddine TATAR

RT distance and weight distributions of Type 1 constacyclic codes of length\\ $4p^s$ over $\frac{\mathbb F_{p^m}[u]}{\left\langle u^a \right\rangle}$

Hai DINH, Bac NGUYEN, Songsak SRIBOONCHITTA

On band operators

Bahri TURAN, Kazım ÖZCAN

Ben WONGSAIJAI, Nattakorn SUKANTAMALA

A generalization of $\pi$-regular rings

Peter DANCHEV

Osman ALTINTAŞ, Nizami MUSTAFA

Academic Researches Index - FooterLogo
ACARINDEX Hakkında
İletişim
Başvuru Koşulları ve Standartlar
Sık Sorulan Sorular
Kurumsal Abonelik