Hartley's theorem on representations of the general linear groups and classical groups

Hartley's theorem on representations of the general linear groups and classical groups

We suggest a new proof of Hartley’s theorem on representations of the general linear groups $GL_n(K)$ where K is a field. Let H be a subgroup of $GL_n(K)$ and E the natural $GL_n(K)$-module. Suppose that the restriction E|H of E to H contains a regular KH-module. The theorem asserts that this is then true for an arbitrary $GL_n(K)$-module M provided dim M > 1 and H is not of exponent 2. Our proof is based on the general facts of representation theory of algebraic groups. In addition, we provide partial generalizations of Hartley’s theorem to other classical groups.

___

  • [1] Borel, A. and Tits, J.: Homomorphismes des ‘abstraits’ de groupes algebrique simples, Ann. Math. 97, 499-571 (1973).
  • [2] Bourbaki, N.: Groupes et algebres de Lie, Paris, Hermann 1975.
  • [3] Dieudonne, J.: La geometrie des groupes classiques, Berlin, Springer-Verlag 1971.
  • [4] Hartley, B.: Relative higher relations modules, and a property of irreducible K-representations of GLn(K) , J. Algebra 104, 113-125 (1986).
  • [5] Lübeck, F.: Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math. 4, 135-169 (2001).
  • [6] Praeger, Ch. and Zalesskii, A.E.: Orbit lengths of permutation groups, and group rings of locally finite simple group of alternating type, Proc. London Math. Soc. 70, part 2, 313-335 (1995).
  • [7] Siemons, J. and Zalesski, A.E.: Regular orbits of cyclic subgroups in permutation representations of certain simple groups, J. Algebra 256, 611-625 (2002).
  • [8] Steinberg, R.: Lectures on Chevalley groups, mimeographed lecture notes, New Haven, Conn., Yale Univ. Math. Dept. 1968.
  • [9] Seitz, G.: The maximal subgroups of classical algebraic groups, Memoirs Amer. Math. Soc. 67, 1-286 (1987).
  • [10] Suprunenko, I.D.: The minimal polynomials of unipotent elements in irreducible representations of the classical groups in add characteristic, Memoirs of Amer. Math. Soc. (to appear)
  • [11] Suprunenko, I.D. and Zalesski, A.E.: Fixed vectors for elements in modules for algebraic groups, Intern. J. of Algebra and Computations 17, 1249-1261 (2007).
  • [12] Wagner, A.: On the classification of the classical groups. Math. Z. 97, 66-76 (1967).
  • [13] Zalesski, A.E.: The eigenvalues of matrices of projective complex representations of the alternating groups (in Russian), Vesti Akad. Navuk Belarusi, ser. fiz., mat., inform., no.3, 41-43 (1996).
  • [14] Zhelobenko, D.P.: Compact groups and their representations, Providence, R.I., American Mathematical Society, 1973.