Groups whose proper subgroups are hypercentral of length at most $leqomega$

Groups whose proper subgroups are hypercentral of length at most $leqomega$

Groups, all proper subgroups of which are hyperceutral of length at most u and every proper subgroup of which is a $B_n$ -group for a natural number n depending on the subgroup, are studied in this article.

___

  • [1] A. O. Asar, Locally nilpotent p-groups whose proper subgroups are hypercentral or nilpotentby-Chernikov, J. London Math. Soc.2 61 , 412-422 (2001).
  • [2] C. Casolo, Periodic soluble groups in which every subnormal subgroup has defect at most two, Arch. Math. 46, 1-7 (1986).
  • [3] C. Casolo, Groups with subnormal subgroups of bounded defect, Rend. Sem. Mat. Univ. Padova 77, 177-187 (1987).
  • [4] W. Gaschütz. Gruppen in denen das normalteilersein transitive ist, J. Reine Angew. Math. 198, 87-92 (1957).
  • [5] D. J. McCaughan and S. E. Stonehewer, Finite soluble groups whose subnormal subgroups have defect at most two, Arch. Math. 35, 56-60 (1980).
  • [6] D. McDougall, The subnormal structure of some classes of soluble groups, J. Austral. Mat. Soc. 13, 365-377 (1972).
  • [7] W. Möhres, Torsionsgruppen, deren untergruppen alle subnormal Sind, Geom. Dedicata.31, 237-244 (1989).
  • [8] W. Möhres, Hyperzentrale Torsionsgruppen, deren Untergruppen alle subnormal sind, Illinois J. Math.35 (1) , 147-157 (1991).
  • [9] F. M. Newman and J. Wiegold, Groups with many nilpotent subgoups, Archiv der Mathematik XV, 241-250 (1964).
  • [10] D. J. S. Robinson, On groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc. 60, 21-38 (1964).
  • [11] D. J. S. Robinson, A note on finite groups in which normality is transitive, Proc. Amer.Math. Soc. 19, 933-937 (1968).
  • [12] D. J. S. Robinson, Finiteness Condition and Generalized Soluble Groups, vols. 1 and 2, Springer-Verlag, 1972.
  • [13] D. J. S. Robinson, A Course in The Theory of Groups, Springer-Verlag, Heidelberg-Berlin-New York, 1982
  • [14] H. Smith, Hypercentral groups with all subgroups subnormal, Bull. London Math. Soc. 15, 229-234 (1983).
  • [15] H. Smith, Groups with few non-nilpotent subgroups, Glasgow Journal of Math. 39, 141-151 (1997).
  • [16] H. Smith, Torsion-free groups with all non-nilpotent subgroups subnormal, Preprint.