Gröbner–Shirshov basis for the singular part of the Brauer semigroup

Gröbner–Shirshov basis for the singular part of the Brauer semigroup

In this paper, we obtain a Gröbner–Shirshov (noncommutative Gröbner) basis for the singular part of theBrauer semigroup. It gives an algorithm for getting normal forms and hence an algorithm for solving the word problemin these semigroups.

___

  • [1] Ate¸s F, Karpuz EG, Kocapinar C, C¸ evik AS. Gr¨obner-Shirshov bases of some monoids. Discrete Math 2011; 311: 1064-1071.
  • [2] Bergman GM. The diamond lemma for ring theory. Adv Math 1978; 29: 178-218.
  • [3] Bokut LA. Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras. Izv Akad Nauk SSSR Math 1972; 36: 1173-1219.
  • [4] Bokut LA. Imbedding into simple associative algebras. Algebr Log 1976; 15: 117-142.
  • [5] Bokut LA. Gr¨obner-Shirshov basis for the Braid group in the Artin-Garside generators. J Symb Comput 2008; 43: 397-405.
  • [6] Bokut LA. Gr¨obner-Shirshov basis for the Braid group in the Birman-Ko-Lee generators. J Algebra 2009; 321: 361-376.
  • [7] Bokut LA, Chen Y. Gr¨obner-Shirshov bases: some new results. In: Proceedings of the 2nd International Congress of Algebras and Combinatorics. Singapore: World Scientific, 2008, pp. 35-56.
  • [8] Bokut LA, Chen Y, Mo Q. Gr¨obner-Shirshov bases for semirings. J Algebra 2013; 385: 47-63.
  • [9] Bokut LA, Chen Y, Shum KP. Some new results on Gr¨obner-Shirshov bases. In: Proceedings of the International Conference on Algebra, 2010.
  • [10] Bokut LA, Kolesnikov PS. Gr¨obner-Shirshov bases: from their incipiency to the present. J Math Sci 2003; 116: 2894-2916.
  • [11] Bokut LA, Kukin G. Algorithmic and Combinatorial Algebra. Dordrecht, the Netherlands: Kluwer, 1994.
  • [12] Bokut LA, Vesnin A. Gr¨obner-Shirshov bases for some Braid groups. J Symb Comput 2006; 41: 357-371.
  • [13] Brauer R. On algebras which are connected with the semisimple continuous groups. Ann Math 1937; 38: 857-872.
  • [14] Buchberger B. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. PhD, University of Innsbruck, Innsbruck, Austria, 1965 (in German).
  • [15] Buchberger B. An algorithmic criterion for the solvability of algebraic systems of equations. Aequationes Math 1970; 4: 374-383 (in German).
  • [16] Chen Y. Gr¨obner-Shirshov bases for Schreier extentions of groups. Commun Algebra 2008; 36: 1609-1625.
  • [17] Chen Y, Qiu J. Gr¨obner-Shirshov basis of Chinese monoid. J Algebra Appl 2008; 7: 623-628.
  • [18] Chen Y, Zhong C. Gr¨obner-Shirshov bases for HNN extentions of groups and for the alternating group. Commun Algebra 2008; 36: 94-103.
  • [19] Chen Y, Zhong C. Gr¨obner-Shirshov bases for braid groups in Adyan–Thurston generators. Algebr Colloq 2013; 20: 309-318.
  • [20] Hironaka H. Resolution of singularities of an algebraic variety over a field of characteristic zero I, II. Ann Math 1964; 79: 109-203, 205-326.
  • [21] Karpuz EG, C¸ evik AS. Gr¨obner-Shirshov bases for extended modular, extended Hecke and Picard groups. Math Notes 2012; 92: 636-642.
  • [22] Kocapinar C, Karpuz EG, Ate¸s F, C¸ evik AS. Gr¨obner-Shirshov bases of the generalized Bruck-Reilly ∗-extension. Algebr Colloq 2012; 19: 813-820.
  • [23] Kudryavtseva G, Maltcev V, Mazorchuk V. L- and R- cross-sections in the Brauer semigroup. Semigroup Forum 2006; 72: 223-248.
  • [24] Kudryavtseva G, Mazorchuk V. On presentation of Brauer-type monoids. Cent Eur J Math 2006; 4: 413-434.
  • [25] Maltcev V, Mazorchuk V. Presentation of the singular part of the Brauer monoid. Math Bohemica 2007; 132: 297-323.
  • [26] Mazorchuk V. Endomorphisms of Bn , PBn and Cn . Commun Algebra 2002; 30: 3489-3513.
  • [27] Shirshov AI. Certain algorithmic problem for Lie algebras. Sibirskii Math Z 1962; 3: 292-296 (in Russian).