Connection between bi snomial coefficients and their analogs and symmetric functions

Connection between bi snomial coefficients and their analogs and symmetric functions

In this paper, on one hand, we propose a new type of symmetric function to interpret the bi s nomial coefficientsand their analogs. On other hand, according to this function, we give an interpretation of these coefficients by latticepaths and tiling. Some identities of these coefficients are also established. This work is an extension of the results ofBelbachir and Benmezai’s “A q -analogue for bi s nomial coefficients and generalized Fibonacci sequences”.

___

  • [1] Andrews G, Baxter J. Lattice gas generalization of the hard hexagon model III q-trinomials coefficients. J Stat Phys 1987; 47: 297-330.
  • [2] Belbachir H, Benmezai A. A q -analogue for bi s nomial coefficients and generalized Fibonacci sequences. C R Acad Sci Paris Ser I 2014; 352: 167-171.
  • [3] Belbachir H, Bouroubi S, Khelladi A. Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution. Annales Mathematicae et Informaticae 2008; 35: 21-30.
  • [4] Belbachir H, N´emeth L, Szalay L. Hyperbolic Pascal triangles. Appl Math Comput 2016; 273: 453-464.
  • [5] Belbachir H, Szalay L. On the arithmetic triangles. S˘iauliai Math Sem 2014; 9: 15-26.
  • [6] Bollinger R. A note on Pascal T -triangles, Multinomial coefficients and Pascal pyramids. Fibonacci Q 1986; 24: 140-144.
  • [7] Bondarenko B. Generalized Pascal Triangles and Pyramids: Their Fractals, Graphs and Applications. Santa Clara, CA, USA: The Fibonacci Association, 1993.
  • [8] Ensley D. Fibonacci’s triangle and other abominations. Math Horizons 2013; 11: 10-14.
  • [9] Knuth D. Subspaces, subsets, and partitions. J Comb Theory A 1971; 10: 178-180.
  • [10] Macdonald I. Symmetric Functions and Hall Polynomials. Oxford, UK: Oxford University Press, 1979.
  • [11] N´emeth L. On the hyperbolic Pascal pyramid. Beitrage zur Algebra und Geometrie 2016; 57: 913-927.
  • [12] Sagan B. The ubiquitous Young tableau, invariant theory and tableaux. IMA Vol Math Appl 1990; 19: 262-298.
  • [13] Sagan B. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Pacific Grove, CA, USA: Wadsworth and Brooks/Cole, 1991.
  • [14] Sloane N. The Online Encyclopedia of Integer Sequences. Available online at https://oeis.org/.
  • [15] Smith C, Hogatt V. Generating functions of central values of generalized Pascal triangles. Fibonacci Q 1979; 17: 58-67.
  • [16] Stanley R. Algebraic Combinatorics: Walks, Trees, Tableaux, and More. Berlin, Germany: Springer, 2013.