Gorenstein transpose with respect to a semidualizing bimodule

Let S and R be rings and SCR be a semidualizing bimodule. We first give the definitions of C-transpose and n-C-torsionfree and give a criterion for a module A to be GC-projective by some property of the C-transpose of A. Then we introduce the notion of C-Gorenstein transpose of a module over two-sided Noetherian rings. We prove that a module M in \mod Rop is a C-Gorenstein transpose of a module A \in \mod S if and only if M can be embedded into a C-transpose of A with the cokernel GC-projective. Finally we investigate some homological properties of the C-Gorenstein transpose of a given module.

Gorenstein transpose with respect to a semidualizing bimodule

Let S and R be rings and SCR be a semidualizing bimodule. We first give the definitions of C-transpose and n-C-torsionfree and give a criterion for a module A to be GC-projective by some property of the C-transpose of A. Then we introduce the notion of C-Gorenstein transpose of a module over two-sided Noetherian rings. We prove that a module M in \mod Rop is a C-Gorenstein transpose of a module A \in \mod S if and only if M can be embedded into a C-transpose of A with the cokernel GC-projective. Finally we investigate some homological properties of the C-Gorenstein transpose of a given module.

___

  • Auslander, M., Bridger, M.: Stable module theory. Memoirs Amer Math Soc. 94, Providence: American Mathematical Society, 1969
  • Christensen, L. W., Frankild. A., Holm, H.: On Gorenstein projective, injective and flat dimensions-A functorial description with applications. J. Algebra. 302, 231–279 (2006).
  • Geng, Y., Ding, N.: W -Gorenstein modules. J. Algebra. 325, 132–146 (2011).
  • Holm, H., J İ rgensen, P.: Semidualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra. 205, 423–445 (2006).
  • Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47(4),781–808 (2007).
  • Huang, C., Huang, Z.: Gorenstein syzygy modules. J. Algebra. 324, 3408–3419 (2010).
  • Huang, Z.: ω - k -torsionfree modules and ω -left approximation dimension. Science in China (Ser. A) 44(2),184–192 (2001).
  • Huang, Z.: Extension closure of relative syzygy modules. Science in China (Ser. A). 46(5), 611–620 (2003).
  • Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra. 161, 167–176 (2001). Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules. J. Algebra. 324(9), 2336–2368 (2010).
  • Vladimir, M.: Gorenstein dimension and torsion of modules over commutative Noetherian rings. Comm in Algebra. 28(12), 5783–5811 (2000).
  • White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra. 2(1), 111–137 (2010).