Generalized higher commutators generated by the multilinear fractional integrals and Lipschitz functions

Let l \in N and \vec{A}=(A1,\dots,Al) and \vec{f}=(f1,\dots,fl) be 2 finite collections of functions, where every function Ai has derivatives of order mi and f1,\dots,fl\in Lc\infty(Rn). Let x\notin\capi=1lSupp fi. The generalized higher commutator generated by the multilinear fractional integral is then given by Ia,m\vec{A}(\vec{f})(x) =\dint(Rn)m \frac{\prod\limitsi=1lRmi+1(Ai;x,yi)fi(yi)}{|(x-y1,\dots ,x-ym)|ln+(m1+m2+\dots+ml)-a} dy1\dots dyl. When DgAi\in \dot{L}bi(0

Generalized higher commutators generated by the multilinear fractional integrals and Lipschitz functions

Let l \in N and \vec{A}=(A1,\dots,Al) and \vec{f}=(f1,\dots,fl) be 2 finite collections of functions, where every function Ai has derivatives of order mi and f1,\dots,fl\in Lc\infty(Rn). Let x\notin\capi=1lSupp fi. The generalized higher commutator generated by the multilinear fractional integral is then given by Ia,m\vec{A}(\vec{f})(x) =\dint(Rn)m \frac{\prod\limitsi=1lRmi+1(Ai;x,yi)fi(yi)}{|(x-y1,\dots ,x-ym)|ln+(m1+m2+\dots+ml)-a} dy1\dots dyl. When DgAi\in \dot{L}bi(0

___

  • Chanillo S. A note on commutators. Indiana U Math J 1982; 31: 7–16.
  • Coifman R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. T Am Math Soc 1975; 212: 315–331.
  • Ding Y, Lu S, Yabuta K. Multilinear singular and fractional integrals. Acta Math Sci 2006; 22: 347–356.
  • Grafakos L, Kalton N. Multilinear Calder´on-Zygmund operators on Hardy spaces. Collect Math 2001; 52: 169–179.
  • Grafakos L, Torres R. Multilinear Calder´on-Zygmud theory. Adv Math 2001; 65: 124–164.
  • Grafakos L, Torres R. On multilinear integral of Calderon-Zygmud type. Publ Mat 2002; 57: 57–91.
  • Grafakos L, Torres R. Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana U Math J 2002; 51: 1261–1276.
  • Iida T, Komori-Furuya Y, Sato E. A note on multilinear fractional integrals (English summary). Anal Theory Appl 2010; 26: 301–307.
  • Kenig C, Stein E. Multilinear estimates and fractional integration. Math Res Lett 1999; 6: 1–5.
  • Lian J, Wu H. A class of commutators for multilinear fractional integrals in nonhomogeneous spaces. J Inequal Appl 2008; 2008: 1–17.
  • Mo H, Lu S. Commutators generated by multilinear Calder´on-Zygmud type singular integral and Lipschitz functions. Acta Math Appl Sin-E, in press. Mo H, Zhang Z. Commutators generated by Multilinear Fractional Integrals integral and Lipschitz functions. Acta Math Sci 2011; 5: 1447–1458.
  • Moen K. Weighted inequalities for multilinear fractional integral operators. Collect Math 2009; 60, 213–238.
  • Paluszynski M. Characterization of the Besov spaces via the commutator operator of Coifman Rochberg and Weiss. Indiana U Math J 1995; 44: 1–18.
  • Tao X, Shi Y, Zhang S. Boundedness of multilinear Riesz potential on the product of Morrey and Herz-Morrey spaces. Acta Math Sin 2009; 52: 535–548.
  • Wang C, Zhang Z. A new proof of Wu’s theorem on vortex sheets. Sci China Math 2012; 55: 1449–1462.
  • Xu J. Boundedness in Lebesgue spaces for commutators of multilinear singular integrals and RBMO functions with non-doubling measures. Sci China Math 2007; 50: 361–376.
  • Yu X, Chen J. Endpoint estimates for commutators of multilinear fractional integral operators. Acta Math Sin 2010; 26: 433–444.