Further results on the join graph of a finite group

Further results on the join graph of a finite group

Let G be a finite group which is not cyclic of prime power order. The join graph ∆(G) is an undirected simple whose vertices are the proper subgroups of G , which are not contained in the Frattini subgroup Φ(G) of G and two vertices H and K are joined by an edge if and only if G = ⟨H, K⟩. We classify finite groups whose join graphs have domination number ≤ 2 and independence number ≤ 3 . We show that ∆(G) ∼= ∆(A4) if and only if G ∼= A4 . We also show that if the independence number of ∆(G) is less than 15 , then G is solvable; moreover, if the equality holds and G is nonsolvable, then G/Φ(G) ∼= A5 .

___

  • [1] Ahmadi H, Taeri B. A graph related to the join of subgroups of a finite group. Rendiconti del Seminario Matematico della Università di Padova. 2014; 131: 281-292. doi: 10.4171/rsmup/131-17
  • [2] Ahmadi H, Taeri B. On the planarity of a graph related to the join of subgroups of a finite group. Bulletin of the Iranian Mathematical Society 2014; 40 (6): 1413-1431.
  • [3] Ahmadi H, Taeri B. Finite groups with regular join graph of subgroups. Journal of Algebra and its Applications 2016; 15 (9): 1650170. doi: 10.1142/s021949881650170x
  • [4] Ashrafi AR. One the number of minimal and maximal subgroups of a finite group. Journal of Sciences University of Tehran International Edition 1998; 3 (1): 15-20.
  • [5] Barry MJJ, Ward MB. Simple groups contain minimal simple groups. Publicacions Matemàtiques 1997; 41 (2): 411-415. doi: 10.5565/publmat_41297_07
  • [6] Bosák J. The graphs of semigroups, Proceedings of the Symposium on theory of graphs, and its applications. 1963; 119-125.
  • [7] Connor T, Leemans D. An atlas of subgroup lattices of finite almost simple groups. Ars Mathematica Contemporanea 2015; 8: 259-266. doi: 10.26493/1855-3974.455.422
  • [8] Csákány, B. Pollák, G. The graph of subgroups of a finite group. Czechoslovak Mathematical Journal 1969; 19 (94): 241-247.
  • [9] Dickson LE. Linear groups: With an exposition of the Galois field theory. Teubner, Leipzig, 1901. doi: 10.5962/bhl.title.22174
  • [10] The GAP Group. Groups, Algorithms and Programing. Version 4.4; 2005; (http://www.gap-system.org).
  • [11] Gorenstein D. Finite Groups. New York, NY, USA: Harper and Row, 1968.
  • [12] Huppert B. Endliche Gruppen I. Berlin, Germany: Springer-Verlag, 1967 (in German).
  • [13] Kurzweil H, Stellmacher B. The theory of finite groups, an introduction. New York, NY, USA: Springer-Verlag, 2004.
  • [14] Lüneburg H. Die Suzukigruppen und ihre Geometrien. Lecture Notes in Mathematics. Berlin, Germany: Springer- Verlag, 1965 (in German).
  • [15] Miller GA, Moreno HC. Non-abelian groups in which every subgroup is abelian. Transactions of the American Mathematical Society 1903; 4(4) 398-404. doi: 10.2307/1986409
  • [16] Rédei L. Die endlichen einstufig nichtnilpotenten Gruppen. Publicationes Mathematicae Debrecen 1956; 4: 303-324 (in German).
  • [17] Robinson DJS. A Course in the Theory of Groups. New York, NY, USA: Springer-Verlag, 1996.
  • [18] Rose JS. A Course on Group Theory. Cambridge University Press, 1978.
  • [19] Shen R. Intersection graphs of subgroups of finite groups. Czechoslovak Mathematical Journal 2010; 60 (135): 945-950. doi: 10.1007/s10587-010-0085-4
  • [20] Thompson JG. Nonsolvable finite groups all of whose local subgroups are solvable. Bulletin of the American Mathematical Society 1968; 74: 383-437. doi: 10.1090/s0002-9904-1968-11953-6
  • [21] Zelinka B. Intersection graphs of finite abelian groups. Czechoslovak Mathematical Journal 1975; 25 (100): 171-174.