Fixed-disc results via simulation functions

Fixed-disc results via simulation functions

In this paper, our aim is to obtain new fixed-disc results on metric spaces. To do this, we present a newapproach using the set of simulation functions and some known fixed-point techniques. We do not need to have somestrong conditions such as completeness or compactness of the metric space or continuity of the self-mapping in ourresults. Taking only one geometric condition, we ensure the existence of a fixed disc of a new type contractive mapping.

___

  • [1] Aydi H, Taş N, Özgür NY, Mlaiki N. Fixed-discs in rectangular metric spaces. Symmetry 2019; 11 (2): 294. doi: 10.3390/sym11020294
  • [2] Bisht RK, Pant RP. A remark on discontinuity at fixed point. Journal of Mathematical Analysis and Applications 2017; 445 (2): 1239-1242. doi: 10.1016/j.jmaa.2016.02.053
  • [3] Chanda A, Dey LK, Radenović S. Simulation functions: a survey of recent results. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas. RACSAM 2019; 113 (3): 2923-2957. doi: 10.1007/s13398-018-0580-2
  • [4] Clevert DA, Unterthiner T, Hochreiter S. Fast and accurate deep networks learning by exponential linear units (ELUs). In: International Conference on Learning Representations; 2016.
  • [5] Felhi A, Aydi H, Zhang D. Fixed points for α-admissible contractive mappings via simulation functions. Journal of Nonlinear Sciences and Applications 2016; 9 (10): 5544-5560. doi: 10.22436/jnsa.009.10.05
  • [6] Jin X, Xu C, Feng J, Wei Y, Xiong J, Yan S. Deep learning with S-shaped rectified linear activation units. In: Thirtieth AAAI Conference on Artificial Intelligence; 2016. pp. 1737-1743.
  • [7] Karapınar E. Fixed points results via simulation functions. Filomat 2016; 30 (8): 2343-2350. doi: 10.2298/fil1608343k
  • [8] Khojasteh F, Shukla S, Radenović S. A new approach to the study of fixed point theory for simulation functions. Filomat 2015; 29 (6): 1189-1194. doi: 10.2298/fil1506189k
  • [9] Mlaiki N, Çelik U, Taş N, Özgür NY, Mukheimer A. Wardowski type contractions and the fixed-circle problem on S -metric spaces. Journal of Mathematics 2018; Art. ID 9127486, 9 pp. doi: 10.1155/2018/9127486
  • [10] Mlaiki N, Taş N, Özgür NY. On the fixed-circle problem and Khan type contractions. Axioms 2018; 7 (4): 80. doi: 10.3390/axioms7040080
  • [11] Nie X, Cao J, Fei S. Multistability and instability of competitive neural networks with non-monotonic piecewise linear activation functions. Nonlinear Analysis: Real World Applications 2019; 45: 799-821. doi: 10.1016/j.nonrwa.2018.08.005
  • [12] Özgür NY, Taş N. Some fixed-circle theorems on metric spaces. Bulletin of the Malaysian Mathematical Sciences Society 2019; 42 (4): 1433-1449. doi: 10.1007/s40840-017-0555-z
  • [13] Özgür NY, Taş N. Fixed-circle problem on S -metric spaces with a geometric viewpoint. Facta Universitatis. Series: Mathematics and Informatics 2019; 34 (3), 459-472. doi: 10.22190/FUMI1903459O
  • [14] Özgür NY, Taş N, Çelik U. New fixed-circle results on S -metric spaces. Bulletin of Mathematical Analysis and Applications 2017; 9 (2): 10-23.
  • [15] Özgür NY, Taş N. Some fixed-circle theorems and discontinuity at fixed circle. AIP Conference Proceedings, 1926, 020048, 2018. doi: 10.1063/1.5020497
  • [16] Özgür NY, Taş N. New discontinuity results with applications. Submitted for publication.
  • [17] Padcharoen A, Kumam P, Saipara P, Chaipunya P. Generalized Suzuki type Z -contraction in complete metric spaces. Kragujevac Journal of Mathematics 2018; 42 (3): 419-430. doi: 10.5937/kgjmath1803419p
  • [18] Pant RP, Özgür NY, Taş N. On discontinuity problem at fixed point. Bulletin of the Malaysian Mathematical Sciences Society 2018; doi: 10.1007/s40840-018-0698-6.
  • [19] Pant RP, Özgür NY, Taş N. New results on discontinuity at fixed point. Submitted for publication.
  • [20] Pant RP, Özgür NY, Taş N. Discontinuity at fixed points with applications. Accepted in Bulletin of the Belgian Mathematical Society-Simon Stevin.
  • [21] Radenovic S, Vetro F, Vujaković J. An alternative and easy approach to fixed point results via simulation functions. Demonstratio Mathematica 2017; 50 (1): 223-230. doi: 10.1515/dema-2017-0022
  • [22] Rhoades BE. Contractive definitions and continuity. Contemporary Mathematics 1988; 72: 233-245. doi: 10.1090/conm/072/956495
  • [23] Taş N, Özgür NY, Mlaiki N. New types of FC -contractions and the fixed-circle problem. Mathematics 2018; 6 (10): 188. doi: 10.3390/math6100188
  • [24] Taş N. Suzuki-Berinde type fixed-point and fixed-circle results on S -metric spaces. Journal of Linear and Topological Algebra 2018; 7 (3): 233-244.
  • [25] Taş N. Various types of fixed-point theorems on S -metric spaces. Journal of Balıkesir University Institute of Science and Technology 2018; 20 (2); 211-223. doi: 10.25092/baunfbed.426665
  • [26] Taş N, Özgür NY. New multivalued contractions and the fixed-circle problem. Submitted for publication.
  • [27] Taş N, Özgür NY. Some fixed-point results on parametric Nb -metric spaces. Korean Mathematical Society. Communications 2018; 33 (3): 943-960. doi: 10.4134/CKMS.c170294
  • [28] Taş N, Özgür NY. Mlaiki N. New fixed-circle results related to FC -contractive and FC -expanding mappings on metric spaces. Submitted for publication.
  • [29] Taş N, Mlaiki N, Aydi H, Özgür NY. Fixed-disc results on metric spaces. Submitted for publication.
  • [30] Tomar A, Sharma R. Some coincidence and common fixed point theorems concerning F -contraction and applications. Journal of International Mathematical Virtual Institute 2018; 8: 181-198. doi: 10.7251/JIMVI1801181T
  • [31] Wang L, Chen T. Multistability of neural networks with Mexican-hat-type activation functions. IEEE Transactions on Neural Networks and Learning Systems 2012; 23 (11): 1816-1826. doi: 10.1109/tnnls.2012.2210732
  • [32] Wolfram Research, Inc., Mathematica, Version 12.0, Champaign, IL (2019).