Count of genus zero J -holomorphic curves in dimensions four and six

Count of genus zero J -holomorphic curves in dimensions four and six

An application of Gromov–Witten invariants is that they distinguish the deformation types of symplectic structures on a smooth manifold. In this manuscript, it is proven that the use of Gromov–Witten invariants in the class of embedded J -holomorphic spheres is restricted. This restriction is in the sense that they cannot distinguish the deformation types of symplectic structures on X1 × S 2 and X2 × S 2 for two minimal, simply connected, symplectic 4-manifolds X1 and X2 with b + 2 (X1) > 1 and b + 2 (X2) > 1. The result employs the adjunction inequality for symplectic 4-manifolds which is derived from Seiberg–Witten theory

___

  • [1] Donaldson SK. An application of gauge theory to four-dimensional topology. Journal of Differential Geometry 1983; 18 (2): 279-315. doi: 10.4310/jdg/1214437665
  • [2] Fintushel R. Knot surgery revisited. In: Elwood DA, Ozsvath PS, Stipsicz SI, Szabo Z (editors). Floer Homology, Gauge Theory, and Low-Dimensional Topology, Clay Mathematics Proceedings, 5. Providence, RI, USA: American Mathematical Society, 2006, pp.195-224.
  • [3] Freedman MH. The topology of four-dimensional manifolds. Journal of Differential Geometry 1982; 17 (3): 357-453. doi: 10.4310/jdg/1214437136
  • [4] Gompf RE, Stipsicz AI. 4-Manifolds and Kirby Calculus. Providence, RI, USA: American Mathematical Society, 1999.
  • [5] Gromov M. Pseudoholomorphic curves in symplectic manifolds. Inventiones Mathematicae 1985; 82 (2): 307-347. doi: 10.1007/BF01388806
  • [6] Jupp PE. Classification of certain 6-manifolds. Mathematical Proceedings of the Cambridge Philosophical Society 1973; 73 (2): 293-300. doi: 10.1017/S0305004100076854
  • [7] Kontsevich M, Manin Y. Gromov–Witten classes, quantum cohomology, and enumerative geometry. Communications in Mathematical Physics 1994; 164 (3): 525-562. doi: 10.1007/BF02101490
  • [8] Kotschick D. On manifolds homeomorphic to CP 2#8CP2 . Inventiones Mathematicae 1989; 95 (3): 591-600. doi: 10.1007/BF01393892
  • [9] McDuff D. The structure of rational and ruled symplectic 4-manifolds. Journal of the American Mathematical Society 1990; 3 (3): 679-712. doi: 10.2307/1990934
  • [10] McDuff D, Salamon D. Introduction to Symplectic Topology. 2nd ed. New York, NY, USA: Oxford University Press, 1998.
  • [11] McDuff D, Salamon D. J-Holomorphic Curves and Symplectic Topology. Providence, RI, USA: American Mathematical Society, 2004.
  • [12] Ruan Y. Symplectic topology on algebraic 3-folds. Journal of Differential Geometry 1994; 39 (1): 215-227. doi: 10.4310/jdg/1214454682
  • [13] Ruan Y. Virtual neighborhoods and pseudo-holomorphic curves. In: Turkish Journal of Mathematics - Proceedings of 6th Gökova Geometry-Topology Conference; Gökova, Turkey; 1999. pp. 161-231.
  • [14] Ruan Y. Gromov–Witten invariants and quantum cohomology. In: Bouwknegt P, Wu S (editors). Geometric analysis and applications to quantum field theory. Boston, MA, USA: Birkhäuser, 2002, pp. 137-156.
  • [15] Ruan Y, Tian G. A mathematical theory of quantum cohomology. Journal of Differential Geometry 1995; 42 (2): 259-367. doi: 10.4310/jdg/1214457234
  • [16] Ruan Y, Tian G. Higher genus symplectic invariants and sigma models coupled with gravity. Inventiones Mathematicae 1997; 130 (3): 455-516. doi: 10.1007/s002220050192
  • [17] Taubes CH. Seiberg Witten and Gromov Invariants for Symplectic 4-Manifolds. Somerville, MA, USA: International Press, 2000.
  • [18] Wall CTC. Classification Problems in Differential Topology. V. On Certain 6-Manifolds. Inventiones Mathematicae 1966; 1 (4): 355-374. doi: 10.1007/BF01389738
  • [19] Zinger A. Standard versus reduced genus-one Gromov–Witten invariants. Geometry and Topology 2008; 12 (2): 1203-1241. doi: 10.2140/gt.2008.12.1203