Conformable fractional Sturm–Liouville equation and some existence results on time scales

Conformable fractional Sturm–Liouville equation and some existence results on time scales

In this study, we analyze a conformable fractional (CF) Sturm–Liouville (SL) equation with boundaryconditions on an arbitrary time scale T. Then we extend the basic spectral properties of the classical SL equationto the CF case. Finally, some sufficient conditions are established to guarantee the existence of a solution for this CF-SLproblem on T by using certain fixed point theorems. For explaining these existence theorems, we give an example withappropriate choices.

___

  • [1] Abdeljawad T. On conformable fractional calculus. J Comput Appl Math 2015; 279: 57–66.
  • [2] Agarwal RP, Bohner M, Wong PJ. Sturm–Liouville eigenvalue problems on time scales. Appl Math Comput 1999; 99: 153-166.
  • [3] Agarwal RP, Ertem T, Zafer A. Asymptotic integration of second-order nonlinear delay differential equations. Appl Math Lett 2015; 48: 128-134.
  • [4] Ahmadkhanlu A, Jahanshahi M. On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales. Bull Iran Math Soc 2012; 38: 241-252.
  • [5] Atıcı FM, Eloe PW. Initial value problems in discrete fractional calculus. P Am Math Soc 2009; 137: 981-989.
  • [6] Aulbach B, Hilger S. A unified approach to continuous and discrete dynamics. In: Bolyai J, editor. Qualitative Theory of Differential Equations. Colloquia Mathematica Societatis. Amsterdam, the Netherlands: North-Holland, 1990, pp. 37-56.
  • [7] Bas E, Metin F. Fractional singular Sturm-Liouville operator for Coulomb potential. Adv Differ Equ 2013; 2013: 300.
  • [8] Benkhettou N, Brito da Cruz AMC, Torres DFM. A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration. Signal Process 2015; 107: 230-237.
  • [9] Benkhettou N, Hammoudi A, Torres DFM. Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problems on time scales. J King Saud Univer Sci 2016; 28: 87-92.
  • [10] Benkhettou N, Hassani S, Torres DFM. A conformable fractional calculus on arbitrary time scales. J King Saud Univ Sci 2016; 28: 93-98.
  • [11] Bohner M. Asymptotic behaviour of discretized Sturm-Liouville eigenvalue problems. J Differ Equ Appl 1998; 3: 289-295.
  • [12] Bohner M, Guseinov GS. Double integral calculus of variations on time scales. Comput Math Appl 2007; 54: 45-57.
  • [13] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston, MA, USA: Birkh¨auser, 2001.
  • [14] Boyadjiev L, Scherer R. Fractional extensions of the temperature field problem in oil strata. Kuwait J Sci Eng 2004; 31: 15-32.
  • [15] Chyan CJ, Davis JM, Henderson J, Yin W. Eigenvalue comparisons for differential equations on a measure chain. Electron J Diff Equ 1998; 35: 1-7.
  • [16] Erbe L, Mert R, Peterson A. Spectral parameter power series for Sturm–Liouville equations on time scales. Appl Math Comput 2012; 218: 7671-7678.
  • [17] Gray HL, Zhang NF. On a new definition of the fractional difference. Math Comp 1988; 50: 513–529.
  • [18] Gulsen T, Yilmaz E. Spectral theory of Dirac system on time scales. Appl Anal 2017; 96: 2684-2694.
  • [19] Guseinov GS. Eigenfunction expansions for a Sturm–Liouville problem on time scales. Int J Diff Equ 2007; 2: 93-104.
  • [20] Hilger S. Ein Masskettenkalk¨ul mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD, Universit¨at W¨urzburg, W¨urzburg, Germany, 1988 (in German).
  • [21] Hilger S. Analysis on measure chains-A unified approach to continuous and discrete calculus. Results Math 1990; 18: 18-56.
  • [22] Huseynov A, Bairamov E. On expansions in eigenfunctions for second order dynamic equations on time scales. Nonlinear Dyn Syst Theory 2009; 9: 77-88.
  • [23] Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. J Comput Appl Math 2014; 264: 65-70.
  • [24] Kilbas AA, Srivastava HH, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam, the Netherlands: Elsevier, 2006.
  • [25] Levitan BM. Inverse Sturm–Liouville problems. Utrecht, the Netherlands: VNU Press, 1987.
  • [26] Lian H, Weigao G. Existence of positive solutions for Sturm-Liouville boundary value problems on the half line. J Math Anal Appl 2006; 321: 781-792.
  • [27] Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 2011; 16: 1140-1153.
  • [28] Miller KS, Ross B. Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications. Koriyama, Japan: Nihon University, 1989, pp. 139-152.
  • [29] Oldham KB, Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Vol. 111. New York, NY, USA: Academic Press, 1974.
  • [30] Rynne BP. L2 spaces and boundary value problems on time scales. J Math Anal Appl 2007; 328: 1217-1236.
  • [31] Schneider WR, Wyss W. Fractional diffusion and wave equations. J Math Phys 1989; 30: 134-144.
  • [32] Yan RA, Sun SR, Han ZL. Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales. Bull Iran Math Soc 2016; 42: 247-262.
  • [33] Yaslan I. Existence of positive solutions for second-order impulsive boundary value problems on time scales. Mediterr J Math 2016; 13: 1613-1624.
  • [34] Yaslan I, Liceli O. Three-point boundary value problems with delta Riemann-Liouville fractional derivative on time scales. Fract Differ Calc 2016; 6: 1-16.
  • [35] Zhang Y, Ma L. Solvability of Sturm-Liouville problems on time scales at resonance. J Comput Appl Math 2010; 233: 1785-1797.