Bilinear multipliers of small Lebesgue spaces

Bilinear multipliers of small Lebesgue spaces

Let G be a compact abelian metric group with Haar measure λ and Gˆ its dual with Haar measure µ. Assume that 1 < pi < ∞, p ′ i = pi pi−1 , (i = 1, 2, 3) and θ ≥ 0. Let L (p ′ i ,θ (G), (i = 1, 2, 3) be small Lebesgue spaces. A bounded sequence m (ξ, η) defined on Gˆ × Gˆ is said to be a bilinear multiplier on G of type [(p ′ 1; (p ′ 2; (p ′ 3] θ if the bilinear operator Bm associated with the symbol m Bm (f, g) (x) = ∑ s∈Gˆ ∑ t∈Gˆ ˆf (s) ˆg (t) m (s, t)⟨s + t, x⟩ defines a bounded bilinear operator from L (p ′ 1 ,θ (G) × L (p ′ 2 ,θ (G) into L (p ′ 3 ,θ (G). We denote by BMθ [(p ′ 1; (p ′ 2; (p ′ 3] the space of all bilinear multipliers of type [(p ′ 1; (p ′ 2; (p ′ 3] θ . In this paper, we discuss some basic properties of the space BMθ [(p ′ 1; (p ′ 2; (p ′ 3] and give examples of bilinear multipliers.

___

  • [1] Anatriello G. Iterated grand and small Lebesgue spaces. Collectanea Mathematica 2014; 65: 273-284.
  • [2] Benedetto JJ, Benedetto RL. A wavelet theory for local fields and related groups. The Journal of Geometric Analysis 2004; 14: 423-456.
  • [3] Capone C, Fiorenza A. On small Lebesgue spaces. Journal of Function Spaces and Applications 2005; 3(1): 73-89.
  • [4] Castillo RE, Rafeiro H. An Introductory Course in Lebesgue Spaces. Switzerland: Springer International Publishing, 2016.
  • [5] Fiorenza A. Duality and reflexity in grand Lebesgue spaces. Collectanea Mathematica 2000; 51(2): 131-148.
  • [6] Greco L, Iwaniec T, Sbordone C. Inverting the p-harmonic operator. Manuscripta Mathematica 1997; 92: 249-258.
  • [7] Gürkanlı AT, Kulak Ö, Sandıkçı A. The spaces of bilinear multipliers of weighted Lorentz type modulation spaces. Georgian Mathematical Journal 2016; 23(3): 351-362.
  • [8] Gürkanlı AT. Inclusion and the approximate identities of the generalized grand Lebesgue spaces. Turkish Journal of Mathematics 2018; 42: 3195-3203.
  • [9] Gürkanlı AT. On the grand Wiener amalgam spaces. Rocky Mountain Journal of Mathematics 2020; 50(5): 1647- 1659.
  • [10] Iwaniec T, Sbordone C. On the integrability of the Jacobian under minimal hypotheses. Archive for Rational Mechanics and Analysis 1992; 119: 129-143.
  • [11] Kulak Ö, Gürkanlı AT. Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces. Journal of Inequalities and Applications 2013; 259.
  • [12] Kulak Ö, Gürkanlı AT. Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces. Journal of Inequalities and Applications 2014; 476.
  • [13] Rudin W. Fourier Analysis on Groups. New York, NY, USA: Wiley-Interscience Publication, 1990.