3-Principalization over S3 -fields
3-Principalization over S3 -fields
Let p ≡ 1 (mod 9) be a prime number and ζ3 be a primitive cube root of unity. Then k = Q( √3 p, ζ3) is a pure metacyclic field with group Gal(k/Q) ≃ S3 . In the case that k possesses a 3-class group Ck,3 of type (9, 3), the capitulation of 3-ideal classes of k in its unramified cyclic cubic extensions is determined, and conclusions concerning the maximal unramified pro-3-extension k (∞) 3 , that is the 3-class field tower of k , are drawn
___
- [1] Aouissi S, Ismaili MC, Talbi M, Azizi A. Fields Q( √3 d, ζ3) whose 3-class group is of type (9, 3). International Journal of Number Theory 2019; 15 (7): 1437-1447.
- [2] Aouissi S, Ismaili MC, Talbi M, Azizi A. The generators of the 3-class group of some fields of degree 6 over Q. Boletim Da Sociedade Paranaense de Matemática Journal 2021; 3 (3): 37-52.
- [3] Aouissi S, Mayer DC, Ismaili MC, Talbi M, Azizi A. 3-rank of ambiguous class groups in cubic Kummer extensions. Periodica Mathematica Hungarica 2020; 81: 250-274.
- [4] Ascione JA, Havas G, Leedham-Green CR. A computer aided classification of certain groups of prime power order. Bulletin of the Australian Mathematical Society 1977; 17: 257-274.
- [5] Bush MR, Mayer DC. 3-Class field towers of exact length 3. Journal of Number Theory 2015; 147: 766-777.
- [6] Calegari F, Emerton M. On the ramification of Hecke algebras at Eisenstein primes. Inventiones Mathematicae 2005; 160: 97-144.
- [7] Gerth III F. On 3-class groups of cyclic cubic extensions of certain number fields. Journal of Number Theory 1976; 8 (1): 84-98.
- [8] Gerth III F. On 3-class groups of pure cubic fields. Journal für die Reine und Angewandte Mathematik 1975; 278/279: 52-62.
- [9] Gerth III F. On 3-class groups of certain pure cubic fields. Bulletin of the Australian Mathematical Society 2005; 72: 471-476.
- [10] Ireland K, Rosen M. A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 1982; 84, Springer-Verlag, New York.
- [11] Ismaili MC. Sur la capitulation des 3-classes d’idéaux de la clôture normale d’un corps cubique pur. Thèse de doctorat, Université Laval, Québec, 1992.
- [12] MAGMA Developer Group. MAGMA Computational Algebra System. Version 2.26-4, Sydney, 2021.
- [13] Mayer DC. Bicyclic commutator quotients with one non-elementary component. arXiv:2108.10754v1.
- [14] Mayer DC. Periodic bifurcations in descendant trees of finite p-groups. Advances in Pure Mathematics 2015; 5 (1): 162-195.
- [15] Mayer DC. New number fields with known p-class tower. Tatra Mountains Mathematical Publications 2015; 64: 21-57. Special Issue on Number Theory and Cryptology ‘15.
- [16] Mayer DC. Artin transfer patterns on descendant trees of finite p-groups. Advances in Pure Mathematics 2016; 6 (1): 66-104.
- [17] Mayer DC. Pattern recognition via Artin transfers applied to class field towers. 3rd International Conference on Mathematics and its Applications (ICMA) 2020; Faculté des Sciences d’ Ain Chock Casablanca (FSAC), Université Hassan II, Casablanca, Morocco, invited keynote, February 28, 2020.
- [18] Scholz A, Taussky O. Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm. Journal für die Reine und Angewandte Mathematik 1934; 171: 19-41.
- [19] Taussky O. A remark concerning Hilbert’s Theorem 94. Journal für die Reine und Angewandte Mathematik 1970; 239/240: 435-438.
- [20] Terada F. A principal ideal theorem in the genus field. Tohoku Mathematical Journal, Second Serie 1971; 23: 69-718.