Ascending chains of ideals in the polynomial ring

Ascending chains of ideals in the polynomial ring

Assume that K is a field and I1 ⊊ ... ⊊ It is an ascending chain (of length t ) of ideals in the polynomial ring K[x1, ..., xm], for some m ≥ 1. Suppose that Ij is generated by polynomials of degrees less or equal to some natural number f(j) ≥ 1, for any j = 1, ..., t. In the paper we construct, in an elementary way, a natural number B(m, f) (depending on m and the function f ) such that t ≤ B(m, f). We also discuss some applications of this result.

___

  • [1] Alpin Y, George A, Ikramov K. Solving the two dimensional CIS problem by a rational algorithm. Linear Algebra and its Applications 2000; 312: 115-123.
  • [2] Alpin Y, Ikramov K. Rational procedures in the problem of common invariant subspaces of two matrices. Journal of Mathematical Sciences 2003; 114 (6): 1757-1764.
  • [3] Adams W, Loustaunau P. An Introduction to Gröbner Bases. Graduate Studies in Mathematics, Vol. 3. Providence, RI, USA: American Mathematical Society, 1994.
  • [4] Arapura D, Peterson C. The common invariant subspace problem: an approach via Gröbner bases. Linear Algebra and its Applications 2004; 384: 1-7.
  • [5] Aschenbrenner M, Pong W. Orderings of monomial ideals. Fundamenta Mathematicae 2004; 181: 27-74.
  • [6] Buchberger B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes naech einen nulldimensionalen Polynomideal. PhD, University of Innsbruck, Innsbruck, Tyrol, Austria, 1965 (in German).
  • [7] Buchberger B. Gröbner Bases: an algorithmic method in polynomial ideal theory. In: Bose NK (editor). Multidimensional Systems Theory. Dordrecht, Netherlands: D. Reidel Publishing Company, 1985, pp. 184-232.
  • [8] Bruns W, Herzog J. Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, Vol. 39. Cambridge, UK: Cambridge University Press, 1993.
  • [9] Eisenbud D. Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150. Berlin, Germany: Springer, 1995.
  • [10] George A, Ikramov K. Common invariant subspaces of two matrices. Linear Algebra and its Applications 1999; 287: 171-179.
  • [11] Heintz J. Definability and fast quantifier elimination in algebraically closed fields. Theoretical Computer Science 1983; 24 (3): 239-277.
  • [12] Jelonek Z. On the effective Nullstellensatz. Inventiones Mathematicae 2005; 162 (1): 1-17.
  • [13] Jamiołkowski A, Kamizawa T, Pastuszak G. On invariant subspace in quantum control systems and some concepts of integrable quantum systems. International Journal of Theoretical Physics 2015; 54 (8): 2662-2674.
  • [14] Jamiołkowski A, Pastuszak G. Generalized Shemesh criterion, common invariant subspaces and irreducible completely positive superoperators. Linear and Multilinear Algebra 2015; 63 (2): 314-325.
  • [15] Kollár J. Sharp effective Nullstellensatz. Journal of the American Mathematical Society 1988; 1: 963-975.
  • [16] Marker D. Model Theory: An Introduction. Berlin, Gemany: Springer, 2002.
  • [17] Mishra B. Algorithmic Algebra. Texts and Monographs in Computer Science. Berlin, Germany: Springer-Verlag, 1993.
  • [18] Moreno Socías G. Length of polynomial ascending chains and primitive recursiveness. Mathematica Scandinavica 1992; 71: 181-205.
  • [19] Pastuszak G. The common invariant subspace problem and Tarski’s theorem. Electronic Journal of Linear Algebra 2017; 32: 343-356.
  • [20] Pastuszak G, Jamiołkowski A. Common reducing unitary subspaces and decoherence in quantum systems. Electronic Journal of Linear Algebra 2015; 30: 253-270.
  • [21] Pastuszak G, Kamizawa T, Jamiołkowski A. On a Criterion for Simultaneous Block-Diagonalization of Normal Matrices. Open Systems and Information Dynamics 2016; 23 (01).
  • [22] Robinson A. Introduction to Model Theory and to the Metamathematics of Algebra. Studies in Logic and the Foundations of Mathematics, Vol. 66. Amsterdam, Netherlands: North-Holland Publishing Company, 1965.
  • [23] Seidenberg A. A new decision method for elementary algebra. Annals of Mathematics 1954; 60: 365-374.
  • [24] Seidenberg A. On the length of a Hilbert ascending chain. Proceedings of the American Mathematical Society 1971; 29: 443-450.
  • [25] Shemesh D. Common eigenvectors of two matrices. Linear Algebra and its Applications 1984; 62: 11-18.
  • [26] Tarski A. A Decision Method for Elementary Algebra and Geometry. Santa Monica, CA, USA: RAND Corporation, 1948.
  • [27] Tsatsomeros M. A criterion for the existence of common invariant subspaces of matrices. Linear Algebra and its Applications 2001; 322: 51-59.
  • [28] Van den Dries L. Alfred Tarski’s elimination theory for real closed fields. Journal of Symbolic Logic 1988; 53 (1): 7-19.