An application of $q$-Sumudu transform for fractional $q$-kinetic equationequatio

An application of $q$-Sumudu transform for fractional $q$-kinetic equationequatio

The aim of this paper is to give an alternative solution for the $q$ -kinetic equation involving the Riemann– Liouville fractional $q$ -integral operator. The solution is obtained in terms of the $q$ -Mittag–Leffler functions using inverse $q$ -Sumudu transform. As applications, some corollaries are presented to illustrate the main results.

___

  • [1] Abdi WH. On certain q -difference equations and q -Laplace transforms. Proc Natl Acad Sci India 1962; 28: 1-15.
  • [2] Agarwal RP. Certain fractional q -integral and q -derivatives. Proc Camb Philos Soc 1969; 66: 365-370.
  • [3] Albayrak D, Purohit SD, U ̧car F. On q -analogues of Sumudu transforms. Analele Stiint Univ 2013; 21: 239-260.
  • [4] Al-Salam WA. Some fractional q -integrals and q -derivatives. Proc Edinb Math Soc 1966/1967; 2: 135-140.
  • [5] Annaby MH, Mansour ZS. q -Fractional Calculus and Equations. Berlin, Germany: Springer-Verlag, 2012.
  • [6] Chouhan A, Purohit SD, Sarswal S. An alternative method for solving generalized differential equations of fractional order. Kragujevac J Math 2013; 37: 299-306.
  • [7] Exton H. q -Hypergeometric Functions and Applications. Chichester, UK: Ellis Horwood, 1983.
  • [8] Garg M, Chanchlani L. On fractional q -kinetic equation. Mat Bilt 2012; 36: 33-46.
  • [9] Gasper G, Rahman M. Generalized Basic Hypergeometric Series. Cambridge, UK: Cambridge University Press, 1990.
  • [10] Hahn W. Beitrage Zur Theorie der Heineschen Reihen, die 24 Integrale der hypergeometrischen q - Diferenzengleichung, das q -Analog on der Laplace Transformation. Math Nachr 1949; 2: 340-379 (in German).
  • [11] Haubold HJ, Mathai AM, Saxena RK. Further solutions of fractional reaction-diffusion equations in terms of the H -function. J Comput Appl Math 2011; 235: 1311-1316.
  • [12] Jackson FH. On q -definite integrals. Quarterly Journal of Pure and Applied Mathematics 1910; 41: 193-203.
  • [13] Kac VG, Cheung P. Quantum Calculus. New York, NY, USA: Springer-Verlag, 2002.
  • [14] Kac VG, De Sole A. On integral representations of q -gamma and q -beta functions. Rend Mat Acc Lincei 2005; 9:11-29.
  • [15] Prabhakar TR, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math J 1971; 19: 7-15.
  • [16] Saichev A, Zaslavsky M. Fractional kinetic equations: solutions and applications. Chaos 1997; 7: 753-764.
  • [17] Saxena RK, Mathai AM, Haubold HJ. On generalized fractional kinetic equations. Physica A 2004; 344: 653-664.
  • [18] Saxena RK, Mathai AM, Haubold HJ. Solution of generalized fractional reaction-diffusion equations. Astrophys Space Sci 2006; 305: 305-313.
  • [19] Saxena RK, Mathai AM, Haubold HJ. Solutions of certain fractional kinetic equations and a fractional diffusion equation. J Math Phys 2010; 51: 103506.
  • [20] Slater LJ. Generalized Hypergeometric Functions. Cambridge, UK: Cambridge University Press, 1966.
  • [21] Watugala GK. Sumudu transform: a new integral transform to solve differential equations and control engineering problems. International Journal of Mathematical Education in Science and Technology 1993; 24: 35-43.
  • [22] Wiman A. Uber de Fundamental Satz in der Theorie der Funktionen, Eα(x) . Acta Math 1905; 29: 191-201 (in German).
  • [23] Zaslavsky GM. Fractional kinetic equation for Hamiltonian chaos. Physica D 1994; 76: 110-122.