On the Fekete–Szegö type functionals for starlike and convex functions

On the Fekete–Szegö type functionals for starlike and convex functions

In the paper we discuss two functionals of the Fekete–Szegö type: $Phi f$ (μ) = a2a4 − $μa3^2$ and $Theta f$ (μ) = a4 − μa2a3 for an analytic function f (z) = z + $a2z^2$ + $a3z^3$ + . . . , z ∈ ∆ , ( ∆ = {z ∈ C : |z| < 1} ) and a real number μ .We focus our research on the estimation of |$Phi f$ (μ)| and |$Theta f$(μ)| , while f is either in S∗ (the class of starlike functions) or in K (the class of convex functions).

___

  • [1] Babalola KO. On H3(1) Hankel determinants for some classes of univalent functions. In: Dragomir SS, Cho JY, editors. Inequality Theory and Applications 2010. New York, NY, USA: Nova Science Publishers, 2010, Vol.6, pp. 1-7.
  • [2] Hayami T, Owa S. Generalized Hankel determinant for certain classes. Int J Math Anal 2010; 4: 2573-2585.
  • [3] Hayman WK. On the second Hankel determinant of mean univalent functions. P Lond Math Soc 1968; 18: 77-94.
  • [4] Janteng A, Halim SA, Darus M. Hankel determinant for starlike and convex functions. Int J Math Anal 2007; 1: 619-625.
  • [5] Lee SK, Ravichandran V, Supramaniam S. Bounds for the second Hankel determinant of certain univalent functions. J Inequal Appl 2013; 2013: 281.
  • [6] Libera RJ, Zlotkiewicz EJ. Early coefficients of the inverse of a regular convex function. P Am Math Soc 1982; 85: 225-230.
  • [7] Livingston AE. The coefficients of multivalent close-to-convex functions. P Am Math Soc 1969; 21: 545-552.
  • [8] Murugusundaramoorthy G, Magesh N. Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant. B Math Anal Appl 2009; 1: 85-89.
  • [9] Noonan JW, Thomas DK. On the Hankel determinants of areally mean p-valent functions. P Lond Math Soc 1972; 25: 503-524.
  • [10] Noor KI. On the Hankel determinant problem for strongly close-to-convex functions. J Nat Geom 1997; 11: 29-34.
  • [11] Pommerenke C. On the coefficients and Hankel determinants of univalent functions. J Lond Math Soc 1966; 41: 111-122.
  • [12] Pommerenke C. On the Hankel determinants of univalent functions. Mathematika 1967; 14: 108-112.
  • [13] Pommerenke C. Univalent functions. G ̈ottingen, Germany: Vandenboeck and Ruprecht, 1975.
  • [14] Zaprawa P. Second Hankel determinants for the class of typically real functions. Abstr Appl Anal 2016; 2016: 3792367.