A short note on some arithmetical properties of the integer part of ap

A short note on some arithmetical properties of the integer part of ap

Let $a>0$ be an irrational number. We study some of the arithmetical properties of ${{lfloor aprfloor}}_{p=2}^infty$ where pdenotes a prime number and $lfloor xrfloor$ denotes the largest integer not exceeding x.

___

  • [1] Abercrombie AG. Beatty sequences and multiplicative number theory. Acta Arithmetica 1995; 70 (3): 195-207.
  • [2] Abercrombie AG, Banks WD, Shparlinski IE. Arithmetic functions on Beatty sequences. Acta Arithmetica 2009; 136 (1): 81-89.
  • [3] Baker RC. Diophantine Inequalities. London Mathematics Society Monograms. New York, NY, USA: Clarendon Press, 1986.
  • [4] Banks WD, Shparlinski IE. Prime numbers with Beatty sequences. Colloquium Mathematicum 2009; 115 (2): 147-157.
  • [5] Banks WD, Shparlinski IE, Weingartner AJ. Prime divisors in Beatty sequences. Journal of Number Theory 2007; 123 (2): 413-425.
  • [6] Graham SW, Kolesnik G. Van der Corput’s Method of Exponential Sums. London Mathematical Society Lecture Note Series, 126. Cambridge, UK: Cambridge University Press, 1991.
  • [7] Güloğlu A, Nevans CW. Sums of multiplicative functions over a Beatty sequence. Bulletin of the Australian Mathematical Society 2008; 78 (2): 327-334.
  • [8] Halberstam H. On the distribution of additive number theoretic functions, I-III. Journal of London Mathematics Society 1955; 30 (31): 43-53.
  • [9] Harman G. Primes in Beatty sequences in short intervals. Mathematika 2016; 62 (2): 572-586.
  • [10] Hongze L, Hao P. Primes of the form ⌊ p + ⌋. Journal of Number Theory 2009; 129 (10): 2328-2334.
  • [11] Khinchin AY. Zur metrischen Theorie der diophantischen Approximationen. Mathematische Zeitschrift 1926; 24 (4): 706-714 (in German).
  • [12] Kuipers L, Niederreiter H. Uniform Distribution of Sequences. Pure and Applied Mathematics. New York, NY, USA: John Wiley, 1974.
  • [13] Linnik JV. The Dispersion Method in Binary Additive Problems (Leningrad 1961). Translated Mathematics Monographs, Vol. 4. Providence, RI, USA: AMS, 1963.
  • [14] Liu Y. Prime analogues of the Erdős-Kac theorem for elliptic curves. Journal of Number Theory 2006; 119: 155-170
  • [15] Mertens F. Ein Beitrag zur analytischen Zahlentheorie. Journal für die Reine und Angewandte Mathematik 1874; 78: 46-62 (in German).
  • [16] Mirsky L. The number of representations of an integer as the sum of a prime and a k -free integer. American Mathematical Monthly 1949; 56: 17-19.
  • [17] Murty R, Liu Y. The Turán sieve method and some of its applications. Journal of the Ramanujan Mathematical Society 1999; 13 (2): 35-49.
  • [18] Roth KF. Rational approximations to algebraic numbers. Mathematika 1955; 2: 1-20.
  • [19] Roth KF. Corrigendum to “Rational approximations to algebraic numbers”. Mathematika 1955; 2: 168.
  • [20] Selberg A. On an elementary method in the theory of primes. Norske Vid Selsk Forh Trondhjem 1947; 19 (18): 64-67.
  • [21] Titchmarsh EC. A divisor problem. Rendiconti del Circolo Matematico di Palermo 1931; 54: 414-429
  • [22] Vaughan RC. On the distribution of p modulo 1. Mathematika 1977; 24: 135-141.
  • [23] Vinogradov IM. The Method of Trigonometrical Sums in the Theory of Numbers. Translated from the Russian, Reprint of the 1954 Translation. New York, NY, USA: Dover Publications, 2004