The spectral expansion for the Hahn–Dirac system on the whole line

The spectral expansion for the Hahn–Dirac system on the whole line

We consider the singular Hahn–Dirac system defined by$-frac1qD_{-wq^{-1},q^{-1}}y_2+p(x)y_1=lambda y_1$$D_{w,q}y_1+r(x)y_2=lambda y_2$where $lambda$ is a complex spectral parameter and p and r are real-valued functions defined on $(-infty,infty)$ and continuousat $omega_0$ . We prove the existence of a spectral function for such a system. We also prove the Parseval equality and thespectral expansion formula in terms of the spectral function for this system on the whole line.

___

  • [1] Aldwoah KA. Generalized time scales and associated difference equations. PhD, Cairo University, Cairo, Egypt, 2009.
  • [2] Allahverdiev BP, Tuna H. An expansion theorem for q-Sturm-Liouville operators on the whole line. Turkish Journal of Mathematics 2018; 42 (3): 1060-1071.
  • [3] Allahverdiev BP, Tuna H. Spectral expansion for the singular Dirac system with impulsive conditions. Turkish Journal of Mathematics 2018; 42 (5): 2527–2545.
  • [4] Allahverdiev BP, Tuna H. Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electronic Journal of Differential Equations 2019: 2019 (3): 1-10.
  • [5] Allahverdiev BP, Tuna H. The Parseval equality and expansion formula for singular Hahn-Dirac system. In: Alparslan-Gok ZS (editor). Emerging Applications of Differential Equations and Game Theory. Hershey, PA, USA: IGI Global (in press).
  • [6] Allahverdiev BP, Tuna H. Eigenfunction Expansion in the Singular Case for Dirac Systems on Time Scales , Konuralp Journal of Mathematics, 2019; 7 (1): 128-135.
  • [7] Álvarez-Nodarse R. On characterizations of classical polynomials. Journal of Computational and Applied Mathematics 2006; 196 (1): 320-337. doi: 10.1016/j.cam.2005.06.046
  • [8] Annaby MH, Hamza AE, Aldwoah KA. Hahn difference operator and associated Jackson–Nörlund integrals. Journal of Optimization Theory and Applications 2012; 154: 133-153. doi: 10.1007/s10957-012-9987-7
  • [9] Annaby MH, Hamza AE, Makharesh SD. A Sturm-Liouville theory for Hahn difference operator. In: Xin L, Zuhair N (editors). Frontiers of Orthogonal Polynomials and q -Series. Singapore: World Scientific, 2018. pp. 35-84.
  • [10] Dobrogowska A, Odzijewicz A. Second order q?difference equations solvable by factorization method. Journal of Computational and Applied Mathematics 2006; 193 (1): 319-346. doi: 10.1016/j.cam.2005.06.009
  • [11] Guseinov GS. Eigenfunction expansions for a Sturm-Liouville problem on time scales. International Journal of Difference Equations 2007; 2 (1): 93-104.
  • [12] Guseinov GS. An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales. Advances in Dynamical Systems and Applications 2008; 3 (1): 147-160.
  • [13] Hahn W. Über orthogonalpolynome, die q?Differenzengleichungen genügen. Mathematische Nachrichten 1949; 2: 4-34 (in German). doi: 10.1002/mana.19490020103
  • [14] Hahn W. Ein beitrag zur theorie der orthogonalpolynome. Monatshefte für Mathematik 1983; 95: 19-24 (in German). doi: 10.1007/BF01301144
  • [15] Hamza AE, Ahmed SA. Theory of linear Hahn difference equations. Journal of Advances in Mathematics 2013; 4 (2): 440-460.
  • [16] Hamza AE, Ahmed SA. Existence and uniqueness of solutions of Hahn difference equations. Advances in Difference Equations 2013; 316: 1-15. doi: 10.1186/1687-1847-2013-316
  • [17] Hamza AE, Makharesh SD. Leibniz’s rule and Fubini’s theorem associated with Hahn difference operator. Journal of Advanced Mathematical 2016; 12 (6): 6335-6345.
  • [18] Hira F. Dirac systems associated with Hahn difference operator. 2018; arXiv: 1806.00710v1.
  • [19] Jackson FH. q -Difference equations. American Journal of Mathematics 1910; 32: 305-314.
  • [20] Kolmogorov AN, Fomin SV. Introductory Real Analysis. Translated by RA Silverman. New York, NY, USA: Dover Publications, 1970.
  • [21] Kwon KH, Lee DW, Park SB, Yoo BH. Hahn class orthogonal polynomials. Kyungpook Mathematical Journal 1998; 38: 259-281.
  • [22] Lesky PA. Eine Charakterisierung der klassischen kontinuierlichen, diskretenund q?Orthgonalpolynome. Aachen, Germany: Shaker, 2005 (in German).
  • [23] Levitan BM, Sargsjan IS. Sturm-Liouville and Dirac operators. Mathematics and Its Applications (Soviet Series). Dordrecht, the Netherlands: Kluwer Academic Publishers Group, 1991.
  • [24] Naimark MA. Linear Differential Operators. 2nd ed. Moscow, USSR: Nauka, 1969 (in Russian).
  • [25] Petronilho J. Generic formulas for the values at the singular points of some special monic classical Hq;! - orthogonal polynomials. Journal of Computational and Applied Mathematics 2007; 205: 314-324. doi: 10.1016/j.cam.2006.05.005
  • [26] Sitthiwirattham T. On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q; !-derivatives. Advances in Difference Equations 2016; 2016: 116. doi: 10.1186/s13662-016-0842-2
  • [27] Titchmarsh EC. Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. 2nd ed. Oxford, UK: Clarendon Press, 1962.