A fully Hadamard and Erdélyi–Kober-type integral boundary value problem of a coupled system of implicit differential equations

A fully Hadamard and Erdélyi–Kober-type integral boundary value problem of a coupled system of implicit differential equations

In this article, we give sufficient conditions for the existence of solutions for a new coupled system of secondorderimplicit differential equations with Hadamard and Erdélyi–Kober fractional integral boundary conditions andnonlocal conditions at the boundaries in Banach space. The main result is based on a Mönch fixed point theoremcombined with the measure of noncompactness of Kuratowski; an example is given to illustrate our approach.

___

  • [1] Agarwal RP, Hedia B, Beddani M. Structure of solution sets for impulsive differential equations. Journal of Fractional Calculus and Applications 2012; 9: 15-27.
  • [2] Ahmad B, Alsaedi A, Ntouyas SK, Tariboon J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Cham, Switzerland: Springer-Verlag, 2010.
  • [3] Ahmad B, Ntouyas SK. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fractional Calculus and Applied Analysis 2014; 17: 348-360.
  • [4] Arab R. Application of measure of noncompactness for the system of functional integral equations. Filomat 2016; 30 : 3063-3073.
  • [5] Benchohra M, Hedia B. Multiple positive solutions for boundary value problem with fractional order. Electronic Journal of Mathematical Analysis and Applications 2013; 2: 138-148.
  • [6] Benchohra M, Hedia B. Multiple positive solutions for boundary value problems with fractional order. International Journal of Advances in Mathematics 2013; 1: 12-22.
  • [7] Butzer PL, Kilbas A, Trujillo JJ. Compositions of Hadamard-type fractional integration operators and the semigroup property. Journal of Mathematical Analysis and Applications 2002; 269: 387-400.
  • [8] Butzer PL, Kilbas A, Trujillo JJ. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. Journal of Mathematical Analysis and Applications 2002; 296: 1-27.
  • [9] Butze PL, Kilbas A, Trujillo JJ. Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. Journal of Mathematical Analysis and Applications 2002; 270: 1-15.
  • [10] Darwish MA. On monotonic solutions of an integral equation of Abel type. Mathematica Bohemica 2008; 133: 407-420.
  • [11] Darwish MA, Rzepka B. Asymptotically stable solutions of a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type. Journal of Function Spaces 2014; 2014: 192542.
  • [12] Diethelm K. The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics. Berlin, Germany: Springer-Verlag, 2010.
  • [13] Hadamard J, Essai sur l’etude des fonctions donnees par leur developpment de Taylor. Journal de Mathématiques Pures et Appliquées 1892; 8: 101-186 (article in French).
  • [14] Kamenskii K, Obukhovskii V, Zecca P. Condensing multivalued maps and semilinear differential inclusions in Banach spaces. Berlin, Germany: De Gruyter, 2001.
  • [15] Kilbas AA, Hadamard-type fractional calculus. Journal of the Korean Mathematical Society 2001; 38: 1191-1204.
  • [16] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam, the Netherlands: Mathematics Studies: Elsevier Science BV, 2006.
  • [17] Kilbas AA, Trujillo JJ. Hadamard-type integrals as G-transforms. Integral Transforms and Special Functions 2003; 14: 413-427.
  • [18] Mathai AM, Haubold HJ. Erdélyi-Kober Fractional Calculus, SpringerBriefs in Mathematical Physics, Germany: Springer, 2018.
  • [19] Mönch H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Analysis 1980; 4: 985-999.
  • [20] Thiramanus P, Ntouyas PS, Tariboon JJ. Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions. Abstract and Applied Analysis 2014; 902054.