A coanalytic Menger group that is not-compact

A coanalytic Menger group that is not-compact

Under V = L we construct coanalytic topological subgroups of reals, demonstrating that even for de nable groups of reals, selection principles may differ.

___

  • [1] Alas OT, Aurichi LF, Junqueira LR, Tall FD. Non-productively Lindelof spaces and small cardinals, Houston J Math 2011; 37: 1373-1381.
  • [2] Alster K. The product of a Lindelof space with the space of irrationals under Martin's Axiom, P Am Math Soc 1990; 110: 543-547.
  • [3] Aurichi LF, Tall FD. Lindelof spaces which are indestructible, productive or D, Topol Appl 2012; 159: 331-340.
  • [4] Barr M, Kennison JF, Raphael R. On productively Lindelof spaces, Sci Math Jpn 2007; 65: 319-332.
  • [5] Bartoszynski T, Shelah S. Continuous images of sets of reals, Topol Appl 2001; 116: 243-253.
  • [6] Blass A. Combinatorial cardinal characteristics of the continuum. In Handbook of Set Theory, M. Foreman and A. Kanamori, eds. Springer, Berlin, 2010.
  • [7] Borel E. Sur la lcassi cation des ensembles de mesure nulle, Bulletin de la Societe Mathematique de France 1919; 47: 97-125.
  • [8] van Douwen EK. The integers and topology. In : K. Kunen and J. E. Vaughan (Eds.) Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111-167.
  • [9] Engelking R. General Topology. Monogra e Matematyczne, Vol. 60. PWN-Polish Scienti c Publishers, Warsaw, 1977.
  • [10] Erdos P, Kunen K, Mauldin R D. Some additive properties of sets of real numbers, Fund Math 1981; 113: 187-199.
  • [11] Frankiewicz R, Zbierski P. Hausdorff Gaps and Limits. Studies in logic and the foundations of mathematics, vol. 132, North-Holland, Amsterdam, 1994.
  • [12] Galvin F, Miller AW. -sets and other singular sets of real numbers, Topol Appl 1984; 17: 145-155.
  • [13] Gerlits J, Nagy Zs. Some properties of C(X), I, Topol Appl 1982; 14: 151-161.
  • [14] Hurewicz W.  Uber eine Verallgemeinerung des Borelschen Theorems, Math Z 1925; 24: 401-421.
  • [15] Hurewicz W.  Uber Folgen stetiger Funktionen, Fund Math 1927; 9: 193-204.
  • [16] Jech T. Set Theory. The Third Millenium ed., Springer, 2002.
  • [17] Just W, Miller AW, Scheepers M, Szeptycki PJ. The combinatorics of open covers II, Topol Appl 1996; 73: 241-266.
  • [18] Kanamori A. The Higher In nite. Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994.
  • [19] Kechris AS. Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156. Springer-Verlag, New York, 1995.
  • [20] Khomskii Y. Regularity Properties and De nability in the Real Number Continuum. ILLC Dissertation Series DS-2012-04. Institute for Logic, Language and Computation, Amsterdam, 2012.
  • [21] Kunen K. Set Theory. Studies in Logic (London), 34. College Publications, London, 2011.
  • [22] Kuratowski C. Topology. vol. I. Academic Press, New York, 1966.
  • [23] Menger K. Einige  Uberdeckungssatze der Punktmengenlehre, Sitzungsberichte Abt. 2a, Mathematic, Astronomie, Physic, Meteorologie und Mechanic (Wiener Akademie) 1924; 133: 421-444.
  • [24] Michael E. Paracompactness and the Lindelof property in nite and countable cartesian products, Compos Math 1971; 23: 199-214.
  • [25] Miller AW. In nite combinatorics and de nability, Ann Pure Appl Logic 1989; 41: 179-203.
  • [26] Miller AW, Fremlin DH. On some properties of Hurewicz, Menger, and Rothberger, Fund Math 1988; 129: 17-33.
  • [27] Miller AW, Tsaban B, Zdomskyy L. Selective covering properties of product spaces, Ann Pure Appl Logic 2014; 165: 1034-1057.
  • [28] Moschovakis YN. Descriptive Set Theory. North-Holland, Amsterdam, 1980.
  • [29] Orenshtein T, Tsaban B. Linear  -additivity and some applications, T Am Math Soc 2011; 363: 3621-3637.
  • [30] Repovs D, Zdomskyy L. On the Menger covering property and D spaces, P Am Math Soc 2012; 140: 1069-1074.
  • [31] Rothberger F. Eine Verscharfung der Eigenschaft C, Fund Math 1938; 30: 50-55.
  • [32] Scheepers M. Combinatorics of open covers (IV): subspaces of the Alexandroff double of the unit interval, Topol Appl 1998; 83: 63-75.
  • [33] Shelah S. Proper forcing. Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982.
  • [34] Szewczak P, Tsaban B. Products of Menger spaces: A combinatorial approach, Ann Pure Appl Logic 2017; 168: 1-18.
  • [35] Tall FD. De nable versions of Menger's conjecture, arXiv:1607.04781.
  • [36] Tall FD, Tokgoz S. On the de nability of Menger spaces which are not  -compact, Topol Appl, to appear.
  • [37] Tsaban B. o-Bounded groups and other topological groups with strong combinatorial properties, P Am Math Soc 2006; 134: 881-891.
  • [38] Tsaban B. Some new directions in in nite-combinatorial topology. In: Topics in Set Sheory and its Applications (J. Bargaria and S. Todorcevic, eds.)Trends in Mathematics. New York: Birkhauser, 2006; pp. 225-255.
  • [39] Tsaban B. Menger's and Hurewicz's Problems: Solutions from The Book" and re nements, Contemp Math 2011; 533: 211-226.
  • [40] Tsaban B, Weiss T. Products of special sets of real numbers, Real Anal Exchange 2004/05; 30: 819-836.
  • [41] Tsaban B, Zdomskyy L. Scales, elds, and a problem of Hurewicz, J Eur Math Soc 2008; 10: 837-866.