Exponential stabilization of a neutrally delayed viscoelastic Timoshenko beam

Exponential stabilization of a neutrally delayed viscoelastic Timoshenko beam

A Timoshenko type beam subject to a viscoelastic damping in the rotational displacement component isconsidered. Taking into account a neutral type delay, we prove a fast stability result despite the previously observeddestabilizing effect due to delays in such systems. The proof relies on the introduction of nine different functionals withwhich we modify the energy of the system. These functionals are carefully selected and adapted to cope with both theviscoelasticity and the neutral delay.

___

  • [1] Bontsema J, De Vries SA. Robustness of flexible systems against small time delays. In: Proceedings of the 27th Conference on Decision and Control, Austin, TX, USA, 1988.
  • [2] Chen H. Some improved criteria on exponential stability of neutral differential equation. Advances in Difference Equations 2012; 2012: 170. doi: 10.1186/1687-1847-2012-170.
  • [3] Datko R. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM Journal on Control and Optimization 1988; 26: 697-713. doi: 10.1137/0326040.
  • [4] Datko R, Lagnese J, Polis MP. An example of the effect of time delays in boundary feedback stabilization of wave equations. SIAM Journal on Control and Optimization 1986; 24: 152-156. doi: 10.1137/0324007.
  • [5] Driver RD. A mixed neutral system. Nonlinear Analysis: Theory, Methods &Applications 1984; 8: 155-158. doi: 10.1016/0362-546X(84)90066-X.
  • [6] Hernández ME, Henriquez HR. Existence results for second order partial neutral functional differential equations. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 2008; 15 (5): 645-670.
  • [7] Hernández ME, Henriquez HR, McKibben MA. Existence of solutions for second order partial neutral functional differential equations. Integral Equations and Operator Theory 2008; 62 (2): 191-217. doi: 10.1007/s00020-008- 1618-1.
  • [8] Grimmer R, Lenczewski R, Schappacher W. Well-posedness of hyperbolic equations with delay in the boundary conditions. In: Clement P, Invernizzi S, Mitidieri E, Vrabie I (editors). Semigroup Theory and Applications. Lecture Notes in Pure and Applied Mathematics, Vol. 116. New York, NY, USA: Marcel Dekker, 1989.
  • [9] Guesmia A, Tatar NE. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed delay. Communications on Pure and Applied Analysis 2015; 14 (2): 1-35. doi: 10.3934/cpaa.2015.14.457.
  • [10] Hale JK, Verduyn Lunel SM. Introduction to Functional Differential Equations. Applied Mathematical Sciences, Vol. 99. New York, NY, USA: Springer Verlag, 2003.
  • [11] Hannsgen KB, Renardy Y, Wheeler RL. Effectiveness and robustness with respect to time delays of boundary feedback stabilization in one-dimensional viscoelasticity. SIAM Journal on Control and Optimization 1988; 26 (5): 1200-1234. doi: 10.1137/0326066.
  • [12] Hanyga A. Wave propagation in media with singular memory. Mathematical and Computer Modelling 2001; 34 (12-13): 1399-1421. doi: 10.1016/S0895-7177(01)00137-6.
  • [13] Hanyga A, Seredyńska M. Power-law attenuation in acoustic and isotropic anelastic media. Geophysical Journal International 2003; 155 (3): 830-838. doi: 10.1111/j.1365-246X.2003.02086.x.
  • [14] Kolmanovskii V, Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1999.
  • [15] Liu G, Yan J. Global asymptotic stability of nonlinear neutral differential equation. Communications in Nonlinear Science and Numerical Simulation 2014; 19 (4): 1035-1041. doi: 10.1016/j.cnsns.2013.08.035.
  • [16] Lokshin AA, Rok VE. Automodal solution of wave equation with delayed time. Uspekhi Matematicheskikh Nauk 1980; T33. No 6 (204): 221-222.
  • [17] Messaoudi S. General decay of solutions of a viscoelastic equation. Journal of Mathematical Analysis and Applications 2008; 341 (2): 1457-1467. doi: 10.1016/j.jmaa.2007.11.048.
  • [18] Muñoz Rivera JE, Racke R. Timoshenko systems with indefinite damping. Journal of Mathematical Analysis and Applications 2008; 341 (2): 1068-1083. doi: 10.1016/j.jmaa.2007.11.012.
  • [19] Ntouyas SK, Sficas YG, Tsamatos PC. Existence results for initial value problems for neutral functional-differential equations. Journal of Differential Equations 1994; 114 (2): 527-537. doi: 10.1006/jdeq.1994.1159.
  • [20] Pata V. Exponential stability in linear viscoelasticity. Quarterly of Applied Mathematics 2006; 64 (3): 499-513.
  • [21] Ribodetti A, Hanyga A. Some effects of the memory kernel singularity on wave propagation and inversion in viscoelastic media – II. Inversion. Geophysical Journal International 2004; 158 (2): 426-442. doi: 10.1111/j.1365- 246X.2004.02337.x.
  • [22] Rojsiraphisal T, Niamsup P. Exponential stability of certain neutral differential equations. Applied Mathematics and Computation 2010; 217 (8): 3875-3880. doi: 10.1016/j.amc.2010.09.047.
  • [23] Sánchez J, Vergara V. Long-time behavior of nonlinear integro-differential evolution equations. Nonlinear Analysis: Theory, Methods &Applications 2013; 91: 20-31. doi: 10.1016/j.na.2013.06.006.
  • [24] Soufyane A. Stabilisation de la poutre de Timoshenko. Comptes Rendus de l’Académie des Sciences - Series-Mathematics I 1999; 328 (8): 731-734 (in French). doi: 10.1016/S0764-4442(99)80244-4.
  • [25] Tatar NE. Exponential decay for a viscoelastic problem with singular kernel. Zeitschrift für angewandte Mathematik und Physik 2009; 60 (4): 640-650. doi: 10.1007/s00033-008-8030-1.
  • [26] Tatar NE. On a large class of kernels yielding exponential stability in viscoelasticity. Applied Mathematics and Computation 2009; 215 (6): 2298-2306. doi: 10.1016/j.amc.2009.08.034.
  • [27] Tatar NE. Arbitrary decays in linear viscoelasticity. Journal of Mathematical Physics 2011; 52 (1): 013502. doi: 10.1063/1.3533766.
  • [28] Tatar NE. A new class of kernels leading to an arbitrary decay in viscoelasticity. Mediterranean Journal of Mathematics 2013; 10 (1): 213-226. doi: 10.1007/s00009-012-0177-5.
  • [29] Wang J. Existence and stability of solutions for neutral differential equations with delay. In: International Conference on Multimedia Technology, 2011, pp. 2462-2465. doi: 10.1109/ICMT.2011.6002527.
  • [30] Wang W, Fan Q, Zhang Y, S. Li S. Asymptotic stability of solution to nonlinear neutral and Volterra functional differential equations in Banach spaces. Applied Mathematics and Computation 2014; 237: 217-226. doi: 10.1016/j.amc.2014.03.111.
  • [31] Wang WS, Li SF, Yang RS. Contractivity and exponential stability of solutions to nonlinear neutral functional differential equations in Banach spaces. Acta Mathematicae Applicatae Sinica, English Series 2012; 28 (2): 289-304. doi: 10.1007/s10255-012-0146-6.
  • [32] Wu J, Xia H. Self-sustained oscillations in a ring array of coupled lossless transmission lines. Journal of Differential Equations 1996; 124 (1): 247-278. doi: 10.1006/jdeq.1996.0009.
  • [33] Wu J, Xia H. Rotating waves in neutral partial functional-differential equations. Journal of Dynamics and Differential Equations 1999; 11 (2): 209-238. doi: 10.1023/A:1021973228398.
  • [34] Ye R, Zhang G. Neutral functional differential equations of second-order with infinite delays. Electronic Journal of Differential Equations 2010; 2010 (36): 1-12.