D-Conformal Curvature Tensor on (LCS )n-Manifolds

This paper deals with the study of geometry of (LCS )n-manifolds. We investigate some propertiesof D-conformally flat and D-conformally semi-symmetric curvature conditions on (LCS )n-manifold. We classify(LCS )n-manifolds, which satisfy the curvature conditions B(ξ, Y)P = 0 and B(ξ, Y)S = 0, where B is the Dconformal curvature tensor and S is the Ricci tensor of manifold.

___

[1] Adati, T. (1988). D-conformal para killing vector fields in special para-Sasakian manifolds, Tensor, 47(3), 215-224.

[2] Atceken, M. and Hui, S. K., Slant and pseudo-slant submanifolds of (LCS )nmanifolds, Czechoslovak Math. J., 63 (2013), 177-190.

[3] Atceken, M., On geometry of submanifolds of (LCS )n-manifolds, Int. J. Math. and Math. Sci., 2012, doi:10.1155/2012/304647.

[4] Atçeken, M. and Yıldırım, U., Weakly symmetric and weakly Ricci symmetric conditions on ( ¨ LCS )n-manifolds, African Journal of Mathematics and Computer Science Research, Vol. 6(6), (2013), 129-134.

[5] Begawadi, C.S., Kumar, E.G. and Venkatesha (2005). On Irrational D-conformal Curvature Tensor, Novi Sad J. Math. 35(2), 85-92.

[6] Chuman, G. (1982). D-conformal vector fields in para-Sasakian manifolds, Tensor N.S., 36, 227-232.

[7] Chuman, G. (1983). On the D-conformal curvature tensor, Tensor, 40(2), 125-134.

[8] Hui, S. K., On φ-pseudo symmetries of (LCS)n-manifolds, Kyungpook Math. J., 53 (2013), 285-294.

[9] Hui, S. K. and Atceken, M., Contact warped product semi-slant submanifolds of (LCS)n-manifolds, Acta Univ. Sapientiae Mathematica, 3(2) (2011), 212-224

[10] Matsumoto, K., On Lorentzian paracontact manifolds, Bulletin of Yamagata University, vol. 12, no. 2, pp. 151-156, 1989.

[11] Mihai, I. and Rosca, R., On Lorentzian para-Sasakian manifolds, Classical Anal., World Sci. Publ., Singapore, (1992), 155-169.

[12] Narain, D. and Yadav, S., On weak concircular symmetries of (LCS )2n+1- manifolds, Global J. Sci. Frontier Research, 12 (2012), 85-94.

[13] O’ Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.

[14] Shah, R.J. (2014). Some curvature properties of D-conformal curvature tensor on LP-Sasakian manifolds, Journal of Institute of Science and Technology, 19(1), 30-34.

[15] Shaikh, A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Mathematical Journal, vol. 43, no. 2, pp. 305-314, 2003.

[16] Shaikh, A. A. and Baishya, K. K., On concircular structure spacetimes II, American J. Appl. Sci., 3(4) (2006), 1790-1794.

[17] Shaikh, A. A. and Baishya, K. K., On concircular structure spacetimes II, American J. Appl. Sci., 3(4) (2006), 1790-1794.

[18] Suguri, S. and Nakayama, S. (1974). D-conformal deformations on almost contact metric structure, Tensor N.S., 28, 125-129.