In this paper we introduce fuzzy sub-H-group and give some examples. We show that there exist anatural transformation between [Y, Z] and [X, Z] where Y is a fuzzy sub-H-group of X. Also we prove that if Y is afuzzy subspace of X, then ΩY is a fuzzy sub-H-group of ΩX.
___
[1] Chang, C. L., Fuzzy topological spaces, Journal of mathematical Analysis and Applications, 24(1968), 182–190.
[2] Chang, Y. Z., Wang Jin, L., Fuzzy homotopy type invariance of fundamental group of fuzzy topological space, Fuzzy Math, 4(1984), 53–56.
[3] Chong-you, Z., Fuzzy path and fuzzy connectedness, Fuzzy sets and Systems, 14.3(1984), 273–280.
[4] Demiralp, S., Guner, E., ¨ Some characterizations of Hopf group on fuzzy topological spaces, Iranian Journal of Fuzzy Systems, 11.(6)(2014),111-121.
[5] Dugundgi, J., Topology, Allyn ans Boston, Boston, 1996.
[6] Foster, D.H., Fuzzy Topological Groups, J.Math.Anal.Appl., 67(1979), 549–564.
[7] Freyd, P., Abelian Categories, Harper & Row, New York, 1964.
[8] Gum¨ us, S., Yildiz, C., ¨ The Fuzzy Sheaf of the Groups Formed by Fuzzy Topological Space, Int.Jorn. of Pure and Appl. Math., 37(1)(2007), 101–112.
[9] Guner, E., ¨ Fuzzy contractibility, Fac. Sci. Univ. Ank. Series A, 1(2007), 11-16.
[10] Guner, E., Balci, S., ¨ On the fuzzy sheaf of the fundamental groups, Taiwanese Journal of Mathematics, (2007), 1057-1062. 2.10
[11] Rosenfeld, A., Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512–517.
[12] Spainer, E.H., Algebraic Topology, Springer,Verlag, 1994.
[13] Zadeh, L. A., Fuzzy Sets, Information and control, 8(1965),