Green's Functions for Two-Interval Sturm-Liouville Problems in Direct Sum Space

Green's Functions for Two-Interval Sturm-Liouville Problems in Direct Sum Space

The theme of the development of the theory and applications of

___

  • Allahverdiev, B. P., Bairamov, E. and E. Ugurlu, Eigenparameter dependent Sturm-Liouville problems in boudary conditions with transmissionconditions, J. Math. Anal. Appl. 401, 88-396 (2013)
  • Amirov, R.Kh., Ozkan, A.S. and Keskin, B., Inverse problems for impulsive Sturm-Liouville operator with spectral parameter linearly containedin boundary conditions, Integral Transforms and Special Functions, 20(8)(2009), 607-618.
  • Ao J. and Sun J. Matrix representations of SturmˆuLiouville problems with coupled eigenparameter-dependent boundary conditions, AppliedMathematics and Computation 244, 142ˆu148(2014).
  • Aydemir, K., Mukhtarov, O., A Class of Sturm-Liouville Problems with Eigenparameter Dependent Transmission Conditions, NumericalFunctional Analysis and Optimization, (2017), Doi: 10.1080/01630563.2017.1316995.
  • Binding, P. A. and Browne, P. J., Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter dependent boundary conditions,Proc. Roy. Soc. Edinburgh Sect. A 127.
  • Kandemir, M. and Mukhtarov, O. Sh., Nonlocal Sturm-Liouville Problems with Integral Terms in the Boundary Conditions, Electronic Journalof Di erential Equations, Vol. 2017 (2017), No. 11, pp. 1-12.
  • Markus, A. S. and Matsayev, V. I. Comparison theorems for spectra of linear Operators and spectral asymptotics, Tr. Mosk. Mat. Obshch.,(1982), vol.45, pp. 133- 181; English transl., Trans. Moscow Math. Soc., 1(1984), 139-188.
  • Mukhtarov, O.Sh., Olˇgar, H. and Aydemir, K., Resolvent Operator and Spectrum of New Type Boundary Value Problems, Filomat, 29:7 (2015),1671-1680.
  • Mukhtarov, O. Sh. and Kandemir, M., Asymptotic behaviour of eigenvalues for the discontinuous boundary- value problem with Functional-Transmissin conditions, Acta Mathematica Scientia vol 22 B(3), (2002) pp.335-345.
  • Olğar, H., Mukhtarov, O. Sh. and Aydemir, K., Some properties of eigenvalues and generalized eigenvectors of one boundary value problem,Filomat, 32:3, 911-920(2018).
  • Panakhov, E. S. and Gulsen, T., On discontinuous Dirac systems with eigenvalue dependent boundary conditions, AIP Conference Proceeding,1648, 260003 (2015), 1-4; https://doi.org/10.1063/1.4912520.