Asymptotic Eigenvalues of Regular Sturm-Liouville Problems with Spectral Parameter-Dependent Boundary Conditions and Symmetric Single Well Potential
In this study, we find asymptotic estimates of eigenvalues for regular
Sturm-Liouville problems having the eigenvalue parameter in all boundary
conditions with the symmetric single well potential that is symmetric to the midpoint of the related interval and nonincreasing on the first semi-region of the related interval.
___
- [1] Andrews, B., Clutterbuck, J., Hauer, D., The fundamental gap for a one-dimensional Schr¨odinger operator with Robin boundary conditions,
arXiv:2002.06900 [math.CA], (2020).
- [2] Ashbaugh M. S., Benguria, R., Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schr¨odinger operators
with symmetric single-well potentials and related results, Proceedings of the American Mathematical Society, 105(1989), 419–424.
- [3] Ashbaugh, M. S., Kielty, D., Spectral gaps of 1-D Robin Sch¨odinger operators with single well potentials, Journal of Mathematical Physics,
61 (9)(2020), 091507.
- [4] Bas¸kaya, E., Asymptotics of eigenvalues for Sturm-Liouville problem with eigenparameter-dependent boundary conditions, New Trends in
Mathematical Sciences, 6(2)(2018), 247–257.
- [5] Capała, K., Dybiec, B., Multimodal stationary states in symmetric single-well potentials driven by Cauchy noise, Journal of Statistical Mechanics:
Theory and Experiment, 2019(2019), 033206.
- [6] Chen, W.-C., Cheng, Y.-H., Remarks on the one-dimensional sloshing problem involving the p-Laplacian operator, Turkish Journal of Mathematics,
44(2020), 1376–1387.
- [7] Chen, D.- Y., Huang, M.- J., Comparison theorems for the eigenvalue gap of Schr¨odinger operators on the real line, Annales Henri Poincar´e,
13(2011), 85–101.
- [8] Ciesla, M., Capała, K., Dybiec, B., Multimodal stationary states under Cauchy noise, Physical Review E, 99(2019), 052118.
- [9] Coşkun, H., Bas¸kaya, E., Asymptotics of eigenvalues of regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition
for integrable potential, Mathematica Scandinavica, 107(2017), 209–223.
- [10] Coşkun, H., Bayram, N., Asymptotics of eigenvalues for regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition,
Journal of Mathematical Analysis and Applications, 306(2)(2005), 548–566.
- [11] Coşkun, H., Kabatas¸, A., Asymptotic approximations of eigenfunctions for regular Sturm-Liouville problems with eigenvalue parameter in the
boundary condition for integrable potential, Mathematica Scandinavica, 113(1)(2013), 143–160.
- [12] Coşkun, H., Kabatas¸, A., Green’ s function of regular Sturm-Liouville problem having eigenparameter in one boundary condition, Turkish
Journal of Mathematics and Computer Science, 4(2016), 1–9.
- [13] Coşkun, H., Kabatas¸, A., Bas¸kaya, E., On Green’ s function for boundary value problem with eigenvalue dependent quadratic boundary
condition, Boundary Value Problems, 71(2017).
- [14] Coşkun, H., Bas¸kaya, E., Kabatas¸, A., Instability intervals for Hill’ s equation with symmetric single well potential, Ukrainian Mathematical
Journal, 71(6)(2019), 977–983.
- [15] Fulton, C., Two point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal
Society of Edinburgh, 77A(1977), 293–308.
- [16] Fulton, C., Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal Society
of Edinburgh, 87A(1980), 1–34.
- [17] Guliyev, N. J., Schr¨odinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, Journal
of Mathematical Physics, 60(6)(2019), 063501.
- [18] Guliyev, N. J., Inverse square singularities and eigenparameter dependent boundary conditions are two sides of the same coin,
arXiv:2001.00061 [math-ph], 2019.
- [19] Guliyev, N. J., Essentially isospectral transformations and their applications, Annali di Matematica Pura ed Applicata, 199(2020), 1621–1648.
- [20] Guliyev, N. J., On two-spectra inverse problems, Proceedings of the American Mathematical Society, 148(2020), 4491–4502.
- [21] Haaser, N. B., Sullivian, J. A., Real Analysis, Van Nostrand Reinhold Company, New York, 1991.
- [22] Hinton, D. B., Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary condition, SIAM Journal on
Mathematical Analysis, 12(1981), 572-584.
- [23] Horvath, M., On the first two eigenvalues of Sturm-Liouville Operators, Proceedings of the American Mathematical Society, 131(4)(2002),
1215–1224.
- [24] Huang, M. J., The first instability interval for Hill equations with symmetric single well potentials, Proceedings of the American Mathematical
Society, 125(1997), 775–778.
- [25] Huang, M. J., Tsai, T. M., The eigenvalue gap for one-dimensional Schrodinger operators with symmetric potentials, Proceedings of the Royal
Society of Edinburgh Section A, 139(2009), 359–366.
- [26] Kerner, J., T¨aufer, M., On the spectral gap of one-dimensional Schrödinger operators on large intervals, arXiv:2012.09060 [math.SP], 2020.
- [27] Mandrysz, M., Dybiec, B., Energetics of single-well undamped stochastic oscillators, Physical Review E, 99(1)(2019), 012125.
- [28] Messori, C., Deep into the Water: Exploring the Hydro-Electromagnetic and QuantumElectrodynamic Properties of Interfacial Water in Living
Systems, Open Access Library Journal, 6 (2019), e5435.