Acute effect of different blood flow restriction protocols on muscle damage

Acute effect of different blood flow restriction protocols on muscle damage

The aim of this study is to examine the acute effect of different blood flow restriction (BFR) protocols on muscle damage. Thirty (age 19.77±1.30 years) healthy young men were included in the study. Participants were randomly divided into three groups: Experiment 1 (continuous BFR+ barbell squat, n=10), Experiment 2 (intermittent BFR + barbell squat, n=10), and Control (only barbell squats without BFR, n=10). In 80% of their 1RMs, they performed barbell squat exercises for a total of six sets, with two repetitions in each set and a 3-minute rest interval between sets. For markers of muscle damage creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST), and alanine transaminase (ALT), blood was drawn from the individuals twice before and immediately after the exercise. Analysis of variance in repeated measures (Repeated Measures ANOVA) test was used to analyze the data. In statistical analysis, the level of significance was accepted as p<.05. As a result of the research, it was determined that there was a difference between groups in LDH values. It was determined that the ALT, AST, and CK values of the participants did not differ according to the experimental and control groups. However, it was observed that the pre-measurement and post-measurement averages differed over time. It was concluded that intermittent BFR from BFR protocols weakens markers of muscle damage compared to other groups.

___

  • Alvarez, I. F., Damas, F., Biazon, T., Miquelini, M., Doma, K., & Libardi, C. A. (2020). Muscle damage responses to resistance exercise performed with high-load versus low-load associated with partial blood flow restriction in young women. Eur J Sport Sci, 20(1), 125-134.
  • American College of Sports Medicine. (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 41(3), 687-708.
  • Bjørnsen, T., Wernbom, M., Løvstad, A., Paulsen, G., D’Souza, R. F., Cameron-Smith, D., ... & Raastad, T. (2019). Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure. J Appl Physiol, 126(3), 578-592
  • Clark, B. C., Manini, T. M., Hoffman, R. L., Williams, P. S., Guiler, M. K., Knutson, M. J., ... Kushnick, M. R. (2011). Relative safety of 4 weeks of blood flow restricted resistance exercise in young, healthy adults. Scand J Med Sci Sport, 21(5), 653-662.
  • Curty, V. M., Melo, A. B., Caldas, L. C., Guimarães Ferreira, L., de Sousa, N. F., Vassallo, P. F., ... & Barauna, V. G. (2018). Blood flow restriction attenuates eccentric exercise-induced muscle damage without perceptual and cardiovascular overload. Clin Physiol Funct Imaging, 38(3), 468-476.
  • Curty, V. M., Melo, A. B., Caldas, L. C., Guimarães-Ferreira, L., de Sousa, N. F., Vassallo, P. F., ... Barauna, V. G. (2018). Blood flow restriction attenuates eccentric exercise-induced muscle damage without perceptual and cardiovascular overload. Clin Physiol Funct Imaging, 38(3), 468-476.
  • Demirci, S. (2019). The effect of blood flow restricted plyometric training on muscle strength and function after anterior cruciate ligament reconstruction. Doctoral Thesis. Health Sciences Institute. Hacettepe University, Ankara.
  • Dorrell, H., & Gee, T. (2016). The acute effects different quantities of branched-chain amino acids have on recovery of muscle function. Sports Nutr Ther, 1(3), 115.
  • Dos Santos, L., Andreatta, M. V., Curty, V. M., Marcarini, W. D., Ferreira, L. G., & Barauna, V. G. (2020). Effects of blood flow restriction on leukocyte profile and muscle damage. Front Physiol, 11, 572040.
  • Fahs, C. A., Rossow, L. M., Seo, D. I., Loenneke, J. P., Sherk, V. D., Kim, E., ... Bemben, M. G. (2011). Effect of different types of resistance exercise on arterial compliance and calf blood flow. Eur J Appl Physiol, 111(12), 2969-2975.
  • Fitschen, P. J., Kistler, B. M., Jeong, J. H., Chung, H. R., Wu, P. T., Walsh, M. J., & Wilund, K. R. (2014). Perceptual effects and efficacy of intermittent or continuous blood flow restriction resistance training. Clin Physiol Funct Imaging, 34(5), 356-363.
  • Franz, A., Behringer, M., Harmsen, J. F., Mayer, C., Krauspe, R., Zilkens, C., & Schumann, M. (2018). Ischemic preconditioning blunts muscle damage responses induced by eccentric exercise. Med Sci Sports Exerc, 50(1), 109-115.
  • Gee, T. I., & Deniel, S. (2016). Branched-chain amino acid supplementation attenuates a decrease in power-producing ability following acute strength training. J Sports Med Phys Fitness, 56(12), 1511-1517.
  • George, D., & Mallery. P. (2001). SPSS for windows step by step: A simple guide and reference 10.0 update. (3rd Edition). Boston: Allyn and Bacon.
  • Goldfarb, A. H., Garten, R. S., Chee, P. D. M., Cho, C., Reeves, G. V., Hollander, D. B., ... Kraemer, R. R. (2008). Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur J Appl Physiol, 104(5), 813-819.
  • Greer, B. K., Woodard, J. L., White, J. P., Arguello, E. M. & Haymes, E. M. (2007). Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. Int J Sport Nutr Exerc Metab, 17(6), 595-607.
  • Howatson, G., Hoad, M., Goodall, S., Tallent, J., Bell, P. G., & French, D. N. (2012). Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sport Nutr, 9(1), 20.
  • Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S. D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med, 51(13), 1003-1011.
  • Jones, A. A., Power, G. A., & Herzog, W. (2016). History dependence of the electromyogram: Implications for isometric steady-state EMG parameters following a lengthening or shortening contraction. J Electromyogr Kines, 27, 30-38.
  • Kafkas, M. E, İlbak, İ., Özgür, Eken, Çınarlı, F., Yılmaz, N., & Kafkas, A. Ş. (2018). Acute effect of different warm up protocols on 1-repetition maximum squat performance. Journal of Sports and Performance Researches, 9(3), 192-205.
  • Karasar, N. (2012). Scientific research method. Ankara: Nobel Publications
  • Kraemer, W. J., Adams, K., Cafarelli, E., Dudley, G. A., Dooly, C., Feigenbaum, M. S., … American College of Sports Medicine. (2002). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 34(2), 364-380.
  • Kraemer, W. J., Ratamess, N. A., Volek, J. S., Häkkinen, K., Rubin, M. R., French, D. N., ... Spiering, B. A. (2006). The effects of amino acid supplementation on hormonal responses to resistance training overreaching. Metabolism, 55(3), 282- 291.
  • Laurentino, G. C., Ugrinowitsch, C., Roschel, H., Aoki, M. S., Soares, A. G., Neves Jr, M., ... Tricoli, V. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc, 44(3), 406-12.
  • Loenneke, J. P., & Pujol, T. J. (2009). The use of occlusion training to produce muscle hypertrophy. Strength Cond J, 31(3), 77-84.
  • Loenneke, J. P., Kearney, M. L., Thrower, A. D., Collins, S., & Pujol, T. J. (2010). The acute response of practical occlusion in the knee extensors. J Strength Cond Res, 24(10), 2831-2834.
  • Loenneke, J. P., Thiebaud, R. S., & Abe, T. (2014). Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence. Scand J Med Sci Sports, 24(6), e415-422.
  • Loenneke, J. P., Thiebaud, R. S., Fahs, C. A., Rossow, L. M., Abe, T., & Bemben, M. G. (2013). Blood flow restriction does not result in prolonged decrements in torque. Eur J Appl Physiol, 113(4), 923-931.
  • Loenneke, J. P., Thrower, A. D., Balapur, A., Barnes, J. T., & Pujol, T. J. (2012). Blood flow–restricted walking does not result in an accumulation of metabolites. Clin Physiol Funct Imaging, 32(1), 80-82.
  • Madarame, H., Kurano, M., Fukumura, K., Fukuda, T., & Nakajima, T. (2013). Haemostatic and inflammatory responses to blood flow restricted exercise in patients with ischaemic heart disease: a pilot study. Clin Physiol Funct Imaging, 33(1), 11-17.
  • Manini, T. M., Vincent, K. R., Leeuwenburgh, C. L., Lees, H. A., Kavazis, A. N., Borst, S. E., & Clark, B. C. (2011). Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol (Oxf), 201(2), 255-263.
  • Matsumoto, K., Koba, T., Hamada, K., Tsujimoto, H., & Mitsuzono, R. (2009). Branched-chain amino acid supplementation increases the lactate threshold during an incremental exercise test in trained individuals. J Nutr Sci Vitaminol, 55(1), 52-58.
  • Neto, G. R., Novaes, J. S., Salerno, V. P., Gonçalves, M. M., Batista, G. R., & Cirilo-Sousa, M. S. (2018). Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress? J Sport Sci, 36(1), 104-110.
  • Nosaka, K., & Clarkson, P. M. (1995). Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc, 27(9), 1263–1269.
  • Ohba, H. Takada, H. Musha, H. Nagashima, J. Mori, N. Awaya, T. Omiya, K. & Murayama, M. (2001). Effect of prolonged strenuous exercise on plasma levels of atrial natriuretic peptide and brain natriuretic peptide in healthy men. Am Heart J, 141(5), 751–758.
  • Osmond, A. (2017). The Effects of Leucine-Enriched Branched-Chain Amino Acid Supplementation on Exercise-Induced Skeletal Muscle Damage. Doctoral dissertation, California State Polytechnic University, Pomona.
  • Penailillo, L., Santander, M., Zbinden-Foncea, H., & Jannas-Vela, S. (2020). Metabolic demand and indirect markers of muscle damage after eccentric cycling with blood flow restriction. Res Q Exerc Sport, 91(4), 705-712.
  • Price, D. D., McGrath, P. A., Rafii, A., & Buckingham, B. (1983). The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain, 17(1), 45-56.
  • Ra, S. G., Miyazaki, T., Ishikura, K., Nagayama, H., Komine, S., Nakata, Y., ... Ohmori, H. (2013). Combined effect of branched-chain amino acids and taurine supplementation on delayed onset muscle soreness and muscle damage in high-intensity eccentric exercise. J Int Soc Sport Nutr, 10(1), 51.
  • Rebalka, I. A., Hawke, T. J. (2014). Potential biomarkers of skeletal muscle damage. Biomark Med, 8(3), 375-378.
  • Rossow, L. M., Fahs, C. A., Loenneke, J. P., Thiebaud, R. S., Sherk, V. D., Abe, T., & Bemben, M. G. (2012). Cardiovascular and perceptual responses to blood flow restricted resistance exercise with differing restrictive cuffs. Clin Physiol Funct Imaging, 32(5), 331-337.
  • Şahin, F. B. (2018). The effect of different recovery types on muscle damage and cytokine release. Master's thesis. Istanbul Gelisim University Institute of Health Sciences, Istanbul.
  • Schoenfeld, B. (2016). Science and development of muscle hypertrophy. Champaign: Human Kinetics. Sieljacks, P., Matzon, A., Wernbom, M., Ringgaard, S., Vissing, K., & Overgaard, K. (2016). Muscle damage and repeated bout effect following blood flow restricted exercise. Eur J Appl Physiol, 116(3), 513-525.
  • Slysz J, Stultz J, Burr JF. (2016) The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport, 19(8), 669–675.
  • Smith, L.L. Miles, M.P. (2000). Exercise-induced muscle injury and inflammation Ed: Garrett J. R., Kırkendall DT. Exercise and Sport Science, Lippincott Williams and Wilkins: Philadelphia. 401-411.
  • Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiuchi, M., ... & Tsutsui, H. (2010). Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol, 108(6), 1563-1567.
  • Sumide, T., Sakuraba, K., Sawaki, K., Ohmura, H., & Tamura, Y. (2009). Effect of resistance exercise training combined with relatively low vascular occlusion. J Sci Med Sport, 12(1), 107-112.
  • Takano, H., Morita, T., Iida, H., Asada, K. I., Kato, M., Uno, K., ... Nakajima, T. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol, 95(1), 65-73.
  • Takarada, Y., Nakamura, Y., Aruga, S., Onda, T., Miyazaki, S., & Ishii, N. (2000). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol, 88(1), 61-65.
  • Thiebaud, R. S., Yasuda, T., Loenneke, J. P., & Abe, T. (2013). Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interv Med Appl Sci, 5(2), 53-59.
  • Tütüneken Y. E. (2021) The effect of low-intensity resistance exercise training combined with blood flow restriction on triceps brachii muscle volume and performance. Master's thesis. Health Sciences University Hamidiye Institute of Health Sciences.
  • Umbel, J. D., Hoffman, R. L., Dearth, D. J., Chleboun, G. S., Manini, T. M., & Clark, B. C. (2009). Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol, 107(6), 687-695.
  • Wernbom, M., Augustsson, J., & Raastad, T. (2008). Ischemic strength training: a low load alternative to heavy resistance exercise? Scand J Med Sci Sports, 18(4), 401-416.
  • Wernbom, M., Järrebring, R., Andreasson, M. A., & Augustsson, J. (2009). Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res, 23(8), 2389-2395.
  • Wilk, M., Trybulski, R., Krzysztofik, M., Wojdala, G., Campos, Y., Zajac, A., ... Stastny, P. (2021). Acute effects of different blood flow restriction protocols on bar velocity during the squat exercise. Front Physiol, 12, 652896.
  • Wilson, J. M., Lowery, R. P., Joy, J. M., Loenneke, J. P., & Naimo, M. A. (2013). Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res, 27(11), 3068-3075.
  • Yasuda, T., Fukumura, K., Iida, H., & Nakajima, T. (2015). Effect of low-load resistance exercise with and without blood flow restriction to volitional fatigue on muscle swelling. Eur J Appl Physiol, 115(5), 919-926.
  • Yasuda, T., Loenneke, J., Ogasawara, R., & Abe, T. (2013). Influence of continuous or intermittent blood flow restriction on muscle activation during low-intensity multiple sets of resistance exercise. Acta Physiol Hung, 100(4), 419-426.
Turkish Journal of Kinesiology-Cover
  • Başlangıç: 2015
  • Yayıncı: Nurtekin Erkmen