Investigation of Disasters with Different InSAR Methods

Investigation of Disasters with Different InSAR Methods

Disasters can cause many loss of life and property every year. Although sudden disasters such as earthquakes and tsunamis cannot be detected in advance, knowing where and when disasters may occur or quickly determining the impact area of a disaster is the main factor in preventing these losses. For this reason, many different measurement methods have been developed by various professional disciplines in order to examine disasters. One of these methods is the Interferometric Synthetic Aperture Radar (InSAR) method, which is a remote sensing method. In this study, the 2015 Chile Illapel earthquake with the Differential SAR Interferometry (DInSAR) method based on the InSAR method, the vertical deformations and change analysis in the Konya Karapınar district, and the California Carr fire with the Permanent Scatterer SAR Interferometry (PS-InSAR) method were investigated. As a result of the investigations, the deformation in the LOS direction in the 2015 Chile Illapel earthquake region was found to be ∼151 cm and the vertical deformations in the Konya Karapınar district were found in the range of 6.4 to -63.7 cm. Additionally, the initial and full spread area of the California Carr fire were determined.

___

  • Akoğlu, A. M. (2008). Analysis and modelling of the earthquake surface deformation with SAR interferometry: Case studies from Turkey and the world (Doctoral Thesis) İstanbul Technical University, Istanbul.
  • Akabalı, A. (2002). Stereo yapay açıklıklı radar görüntülerinden otomatik sayısal yükseklik modeli Üretilmesi ve doğruluğunun araştırılması, (Master thesis) Yildiz Technical University, Istanbul.
  • Balık Şanlı, F. (2004). Elektro-optik ve SAR uydu görüntüleri ile arazi bitki örtüsünün belirlenmesi (Doctoral Thesis) Yildiz Technical University, Istanbul.
  • Bamler, R. and Hartl, P., (1998). Synthetic aperture radar interferometry. Inverse Problems 14(4), 1–54.
  • Carnec, C., Massonnet, D. and King, C. (1996). Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophysical Research Letters, 23(24), 3579-3582.
  • Curlander, J. C. and McDonough, R. N. (1991). Synthetic aperture radar systems and signal processing. John Wiley & Sons, Inc., Press, New York, USA.
  • Çakır, Z. (2003). Analysis of the crustal deformation caused by the 1999 İzmit and Düzce Earthquakes using synthetic aperture radar interferometry (Doctoral Thesis) İstanbul Technical University, Istanbul.
  • Elachi, C. (1988). Spaceborne radar remote sensing: Applications and techniques. IEEE Press, New York, ABD.
  • Ferretti, A., Prati, C. and Rocca, F. (1999). Process for radar measurements of the movement of city areas and landsliding zones. EPO Pattent NO: EP1183551B, European Patent Office.
  • Ferretti, A., Prati, C. and Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE TGRS, 38, 5, 2202-2212.
  • Fielding, E. J., Blom, R. G. ve Goldstein, R. M. (1998). Rapid subsidence over oil fields measured by SAR interferometry. Geophysical Research Letters, 25(17), 3215-3218.
  • Fujiwara, S., Rosen, P. A., Tobita, M. and Murakami, M. (1998). Crustal deformation measurements using repeat-pass JERS 1 synthetic aperture radar interferometry near the Izu Peninsula, Japan. Journal of Geophysical Research: Solid Earth, 103(B2), 2411-2426.
  • Gabriel, A. K., Goldstein, R. M. and Zebker, H. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 94,9183-9191.
  • Goldstein, R. M. and Zebker, H. A. (1987). Interferometric radar measurement of ocean surface currents. Nature, 328(6132), 707-709.
  • Goldstein, R. M., Engelhardt, H., Kamb, B. and Frolich, R. M. (1993). Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science, 262(5139), 1525-1530.
  • Graham, L.C. (1974). Synthetic Interferometer Radar for Topographic Mapping. Proceedings of the IEEE, 62(6), 763.
  • Grandin, R., Klein, E., Métois, M. and Vigny, C. (2016). Three‐dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across‐and along‐track Sentinel‐1 TOPS interferometry. Geophys. Res. Lett., 43(6), 2552-2561.
  • Hanssen, R. F. (2001). Radar interferometry data interpretation and error analysis. Kluwer Academic Publishers, Dordrecht, Hollanda.
  • Haynes, M, Capes, R., Lawrences, G., Smith, A., Shilston, D. and Nicholls, G. (1997). Majorurban subsidence mapped by differential SAR interferometry, The 3rd ERS Symposium (ESA). Florence, Italy, 18-21.
  • Massonnet, D., Briole, P and Arnaud, A. (1995). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375(6532), 567–570.
  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. ve Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138-142.
  • Massonnet, D., ve Feigl, K. L. (1995). Discrimination of geophysical phenomena in satellite radar interferograms. Geophysical Research Letters, 221(2), 1537–1540.
  • Meyer, B., Armijo, R., Massonnet, D., De Chabalier, J. B., Delacourt, C., Ruegg, J. C. and Papanastassiou, D. (1996). The 1995 Grevena (northern Greece) Earthquake: Fault model constrained with tectonic observations and SAR interferometry. Geophysical Research Letters, 23(19), 2677-2680.
  • Murakami, M., Tobita, M., Fujiwara, S., Saito, T. and Masaharu, H. (1996). Coseismic crustal deformations of 1994 Northridge, California, earthquake detected by interferometric JERS 1 synthetic aperture radar. Journal of Geophysical Research: Solid Earth, 101(B4), 8605-8614.
  • Orhan, O., Kırtıloğlu, O. S. ve Yakar, M. (2020). Konya kapalı havzası obruk envanter bilgi sisteminin oluşturulması. Geomatik, 5(2), 81-90.
  • Ozawa, S., Murakami, M., Fujiwara, S. ve Tobita, M. (1997). Synthetic aperture radar interferogram of the 1995 Kobe Earthquake and its geodetic inversion. Geophysical Research Letters, 24(18), 2327-2330.
  • Peltzer, G., Hudnut, K. W., Feigl, K. L. (1994). Analysis of coseismic surface displacement gradients using radar interferometry: New insights into the Landers earthquake. Journal of Geophysical Research: Solid Earth, 99(B11), 21971–21981.
  • Peltzer, G. and Rosen, P. (1995). Surface Displacement of the 17 May 1993 Eureka Valley, California, Earthquake Observed by SAR Interferometry. Science, 268(5215), 1333–1336.
  • Price, E. J. and Sandwell, D. T. (1998). Small-scale deformations associated with the 1992 Landers, California, earthquake mapped by synthetic aperture radar interferometry phase gradients. Journal of Geophysical Research: Solid Earth, 103(B11), 27001-27016.
  • Ristau, J. P. (1999). Applications of synthetic aperture radar interferometry in the study of the nahanni earthquake region. Master of Science (M. Sc.) in Geophysics, Department of Geological Sciences University of Manitoba, Manitoba, Canada.
  • Rocca, F., Prati, C. and Ferretti, A. (2010). Space-borne SARs: impact of wavelengths and scan modes on ground motion studies. Annals of GIS, 16(2), 69-79.
  • Rogers, A. E. E. and Ingalls, R. P. (1969). Venus: Mapping the surface reflectivity by radar interferometry. Science, 165(3895), 797-799.
  • Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H. and Fielding, E. J. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, Planets, 101(E10), 23109-23125.
  • Salora, G., De Novellis, V., Castaldo, R., De Luca, C., Lanari, R., Manunta, M. and Casu, F. (2016). Coseismic fault model of Mw 8.3 2015 Illapel earthquake (Chile) retrieved from multi‐orbit Sentinel1‐A DInSAR measurements. Remote Sens., 8(4), 323.
  • Şengün, Y. S. (2008). GPS ve InSAR ölçülerini birlikte kullanarak İzmit Depreminde oluşan deformasyonun modellenmesi (Doctoral Thesis) İstanbul Technical University, Istanbul.
  • Vadon, H. ve Sigmundsson, F. (1997). Crustal deformation from 1992 to 1995 at the Mid-Atlantic ridge, Southwest Iceland, mapped by satellite radar interferometry. Science, 275(5297), 193-197.
  • Wang, Z., Balz, T., Zhang, L., Perissin, D., Liao and M. (2009). Using TSX/TDX Pursuit Monostatic SAR Stacks for PS-InSAR Analysis in Urban Areas. Remote Senssing, 11, 1, 26.
  • Yılmaztürk, S. (2015). SBAS-InSAR yöntemiyle düşey yönlü yüzey deformasyonlarının belirlenmesi: Bursa-Orhaneli linyit madeni örneği (Master Thesis) İstanbul Technical University, Istanbul.
  • Url-1: https://www.sarproz.com, (last accessed 2 April 2018)
  • Url-2: https://www.radartutorial.eu/01.basics /pic/radarprinzip.print, (last accessed 4 November 2019)