Genetic Algorithms Applied to Fractional Polynomials for Power Selection: Application to Diabetes Data

Genetic Algorithms Applied to Fractional Polynomials for Power Selection: Application to Diabetes Data

Fractional polynomials are powerful statistic tools used in multivariable building model to select relevant variables and their functional form. This selection of variables, together with their corresponding power is performed through a multivariable fractional polynomials (MFP) algorithm that uses a closed test procedure, called function selection procedure (FSP), based on the statistical significance level α. In this paper, Genetic algorithms, which are stochastic search and optimization methods based on string representation of candidate solutions and various operators such as selection, crossover and mutation; reproducing genetic processes in nature, are used as alternative to MFP algorithm to select powers in an extended set of real numbers (to be specified) by minimizing the Bayesian Information Criteria (BIC). A simulation study and an application to a real dataset are performed to compare the two algorithms in many scenarios. Both algorithms perform quite well in terms of mean square error with Genetic algorithms that yied a more parsimonious model comparing to MFP Algorithm.

___

  • [1] P. Royston and D. G. Altman, ‘Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling’, Appl. Stat., vol. 43, no. 3, pp. 429–467, 1994.
  • [2] P. Royston and W. Sauerbrei, ‘Multivariable model-building: a pragmatic approach to regression anaylsis based on fractional polynomials for modelling continuous variables’. John Wiley & Sons, 2008.
  • [3] L. Breiman, ‘Bagging predictors’, Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996.
  • [4] J. H. Friedman, ‘Multivariate adaptive regression splines’, Ann. Stat., pp. 1–67, 1991.
  • [5] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, and others, ‘Least angle regression’, Ann. Stat., vol. 32, no. 2, pp. 407–499, 2004.
  • [6] P. Royston and W. Sauerbrei, Multivariable model-building: a pragmatic approach to regression anaylsis based on fractional polynomials for modelling continuous variables. John Wiley & Sons, 2008.
  • [7] G. Ambler and P. Royston, ‘Fractional polynomial model selection procedures: investigation of Type {I} error rate’, J. Stat. Comput. Simul., vol. 69, no. 1, pp. 89–108, 2001.
  • [8] W. Sauerbrei and P. Royston, ‘Corrigendum: Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials’, J. R. Stat. Soc. Ser. A (Statistics Soc., vol. 165, no. 2, pp. 399–400, 2002.
  • [9] C. Darwin, ‘The origin of species by means of natural selection, or, The preservation of favored races in the struggle for life. Vol. 1’, Int. Sci. Libr., 1897.
  • [10] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, 1975.
  • [11] S. Owais, P. Gajdoš, and V. Snášel, ‘Usage of genetic algorithm for lattice drawing’, Concept Lattices Appl., vol. 2005, pp. 82–91, 2005.
  • [12] D. E. Golberg, ‘Genetic algorithms in search, optimization, and machine learning’, Addion wesley, vol. 1989, p. 102, 1989.
  • [13] R. L. Haupt and H. S. Ellen, Practical genetic algorithms. John Wiley & Sons, 2004.
  • [14] L. Scrucca, ‘{GA}: A Package for Genetic Algorithms in {R}’, J. Stat. Softw., vol. 53, no. 4, pp. 1–37, 2013.
  • [15] M. Wahde, Biologically inspired optimization methods: an introduction. WIT press, 2008.
  • [16] G. Ambler and A. Benner, ‘mfp: Multivariable Fractional Polynomials.{ R} package version 1.4. 9’. 2010.
  • [17] A. A. Neath and J. E. Cavanaugh, ‘The Bayesian information criterion: background, derivation, and applications’, Wiley Interdiscip. Rev. Comput. Stat., vol. 4, no. 2, pp. 199–203, 2012.
  • [18] D. E. Goldberg and K. Deb, ‘A comparative analysis of selection schemes used in genetic algorithms’, Found. Genet. algorithms, vol. 1, pp. 69–93, 1991.
  • [19] T. Blickle and L. Thiele, ‘A comparison of selection schemes used in evolutionary algorithms’, Evol. Comput., vol. 4, no. 4, pp. 361–394, 1996.
  • [20] B. L. Miller and D. E. Goldberg, ‘Genetic algorithms, tournament selection, and the effects of noise’, Complex Syst., vol. 9, no. 3, pp. 193–212, 1995.