Thermal Tolerance, Oxygen Consumption and Stress Response in Danio dangila and Brachydanio rerio (Hamilton, 1822) Acclimated to Four Temperatures

Anahtar Kelimeler:

-

Thermal Tolerance, Oxygen Consumption and Stress Response in Danio dangila and Brachydanio rerio (Hamilton, 1822) Acclimated to Four Temperatures

In this study, we determine critical (CTMax) and lethal (LTMax) thermal tolerance, acclimation response ration (ARR), rate of oxygen consumption and stress in two potential ornamental fishes of the North Eastern Hill region of India, Danio dangila and Brachydanio rerio. The fishes were collected from wild and acclimatized at 18°C for 30 days. The fishes were then constantly reared at temperature regime of 20, 25, 30 and 35°C separately in insulated plastic tank for 45 days. Fishes from each rearing temperature were subjected to constant rate of increase at 1.0°C/min to determine the thermal tolerance. The results implicate significant increase (p<0.05) in CTMax (36.2±0.02, 37.7±0.31, 39.6±0.07, 40.9±0.10) and LTMax (38.1±0.08, 39.8±0.06, 40.0±0.07, 41.1±0.04) in D. dangila with increasing acclimation temperatures of 20, 25, 30 and 35°C, respectively. Similarly, CTMax (36.4±0.05, 37.2±0.04, 38.7±0.03, 39.8±0.01) and LTMax (39.8±0.03, 40.4±0.02, 41.2±0.06, 42.2±0.03) increased significantly (p<0.05) in B. rerio with increasing acclimation temperatures. Inter species variation was evident between the temperatures. Oxygen consumption rate increased (p<0.05) with increasing temperature in both the species. Overall, our results suggest that B. rerio is more thermal tolerant and show better adaptation in comparison to D. dangila.

___

  • Beitinger, T.L., Bennett, W.A. and McCauley, R.W. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58(3): 237-275.
  • Bevelhimer, M. and Bennett, W. 2000. Assessing cumulative thermal stress in fish during chronic intermittent exposure to high temperatures. Environmental Science and Policy, 3(1): 211–216. doi: 1016/S1462-9011(00)00056-3
  • Carveth, C.J., Widmer, A.M. and Bonar, S.A. 2006. Comparison of upper thermal tolerance of native and nonnative fish species in Arizona. Transactions of the American Fisheries Society 135(6): 1433-1440. doi: 1577/T05-025.1
  • Claussen, D.L. 1977. Thermal acclimation in ambistomatid salamanders. Comparative Biochemistry and Physiology Part A: Physiology, 58(4): 333-340. doi: 1016/0300-9629(77)90150-5
  • Das, T., Pal, A.K., Chakraborty, S.K., Manush, S.M., Chatterjee, N. and Mukherjee, S.C. 2004. Thermal tolerance and oxygen consumption of Indian Major Carps acclimated to four temperatures. Journal of Thermal Biology, 29(3): 157-1
  • Diaz, F., Re, A.D., Gonzalez, R.A., Sanchez, L.N., Leyva, G. and Valenzuela, F. 2007. Temperature preference and oxygen consumption of the largemouth bass Micropterus salmoides (Lacepede) acclimated to different temperatures. Aquaculture Research, 38(13): 1387–1394. doi: 10.1111/j.1365-2109.2007.01817.x
  • Dülger, N., Kumlu, M., Türkmen, S., Ölçülü, A., Eroldoĝan, O.T., Yılmaz, H.A. and Öçal, N 2012. Thermal tolerance of European Sea Bass (Dicentrarchus labrax) juveniles acclimated to three temperature levels. Journal of Thermal Biology, 37(1): 79-82. doi: 10.1016/j.jtherbio.2011.11.003
  • Eme, J. and Bennett,W.A. 2009. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. Journal of Thermal Biology., 34(5): 2202 doi: 10.1016/j.jtherbio.2009.02.005
  • Fishman, M.C. 2001. Zebrafish-the canonical vertebrate. Science, 294: 1290–1291. doi: 1126/science.1066652
  • Gerhard, G.S. and Cheng, K.C. 2002. "A call to fins! Zebrafish as a gerontological model". Aging Cell, 1(2): 104–111. PMID: 12882339
  • Herrera, F.D., Uribe, E.S., Ramirez, L.F.B. and Mora, A.G. 19 Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda: Palaemonidae). Journal of Thermal Biology, 23(6): 381–385. doi: 10.1016/S0306-4565(98)00029-1
  • Hill, A.J., Teraoka, H, Heideman, W. and Peterson, R.E. 200 "Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity". Toxicological Sciences 86 (1): 6–19. doi: 10.1093/toxsci/kfi110
  • Ito, L.S., Yamashita, M. and Strüssmann, C.A. 2003. Histological process and dynamics of germ cell degeneration in Pejerrey Odontesthes bonariensis larvae and juveniles during exposure to warm water. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 297A(2): 169-179. doi: 1002/jez.a.10249
  • Iwama, G.K., Vijayan, M.M., Forsyth, R.B. and Ackerman, P.A. 1999. Heat shock proteins and physiological stress in fish. Amer. Zool., 39(6): 901-909. doi: 1093/icb/39.6.901
  • Kita, J., Tsuchida, S. and Setoguma, T. 1996. Temperature preference and tolerance, and oxygen consumption of the marbled rock-fish, Sebastiscus marmoratus. Marine Biology, 125(3): 467-471.
  • Kothawale, D.R. and Kumar, K.R. 2005. On the recent changes in surface temperature trends over India, Geophysical Research Letters, 32(15): L18714. doi: 1029/2005GL023528
  • Kumar, M. 2011. Evidences, Projections and Potential Impacts of Climate Change on Food Production in Northeast Indian Journal of Hill Farming, 24(1&2): 1
  • Kutty, M.N. and Peer Mohamed, M., 1975. Metabolic adaptations of mullet, Rhinomugil cersula (Hamilton) with special reference to energy utilization. Aquaculture 5(3): 253-270. doi: 10.1016/00448486(75)90003-4
  • MacNutt, M.J., Hinch, S.G., Farrell, A.P. and Topp, S. 200 The effect of temperature and acclimation period on repeat swimming performance in cutthroat trout. Journal of Fish Biology, 65(2): 342–353. doi: 1111/j.0022-1112.2004.00453.x
  • Magnuson, J.J., Crowder L.B. and Medwick, P.A. 1979. Temperature as an ecological resource. Amer. Zool., 19(1): 331-343. doi: 10.1093/icb/19.1.331
  • Mahapatra, B.K., Vinod, K. and Mandal, B.K. 2003. Studies on native ornamental fish of Meghalaya with a note on their cultural prospects. Aquaculture 4 (2): 1711
  • Mahapatra, B.K., Vinod, K. and Mandal, B.K. 2004. Ornamental fish of North Eastern India – Its distribution and conservation status. Environ. Ecol., 22(3): 674-683.
  • Majhi, S.K., Das, A. and Mandal, B.K. 2006. Growth Performance of Organically Cultured Grass Carp C. idella (Val.) Under Mid-hill Conditions of Meghalaya: North Eastern India. Turkish Journal of Fisheries and Aquatic Sciences, 6: 105-108.
  • Majhi, S.K., Hattori, R.S., Rahman, S.M., Suzuki, T. and Strüssmann, C.A. 2009. Experimentally-induced depletion of germ cells in sub-adult Patagonian pejerrey (Odontesthes hatcheri). Theriogenology, 71(7) 1162-1172. doi: 1016/j.theriogenology.2008.12.008
  • Re, A.D., Diaz, F., Sierra, E, Rodriguez, J. and Perez, E. 200 Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus (Ive) (Crustacea, Penaeidae). Journal of Thermal Biology, 30(8): 618-6 Reynolds, W.W. and Casterlin, M.E. 1979. Behavioural thermoregulation and the final preferandum paradigm. Amer. Zool., 19(1): 211-2 doi:1093/icb/19.1.193
  • Strüssmann, C.A., Saito, T. and Takashima, F. 1998. Heat induced germ cell deficiency in the teleosts Odontesthes bonariensis and Patagonina hatcheri. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 119 (2): 6376 doi: 10.1016/S1095-6433(97)00477-7
  • Tsuchida, S. 1995. The relationship between upper temperature tolerance and final preferendum of Japanese marine fish. Journal of Thermal Biology, 20(1,2): 35-41. doi: 10.1016/0306-4565(94)00024-D
  • Vascotto, S.G., Beckham,Y. and Kelly, G.M. 1997. The zebrafish’s swim to fame as an experimental model in biology. Biochemistry and Cell Biology, 75(5): 479– 4 1139/o97-081
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon