Sampling efficiency of Gerking sampler and sweep net in pond emergent littoral macrophyte beds – a pilot study

Modifiye edilmiş Gerking örnek toplayıcı, sucul fitofiloz makroomurgasızların toplanması amacıyla kullanılan bir alettir. Sistem, metal kasalı kutu ve hareketli bıçaklardan oluşmaktadır. Su üstü litoral makrofit yataklarında örneklem alınması için yapılmıştır. Bu çalışmada, Gerking örnek toplayıcının etkinliği ile sık kullanılan Trap’ın örneklem etkinliği ile karşılaştırılmıştır. Örneklemeler üç sazan havuzunun litoral bölgesinde bir mevsim boyunca (yaz sonu) su üstü vejetasyona ait mezohabitatta gerçekleştirilmiştir. Gerking örnek toplayıcı ile örnek toplamak için daha çok emek harcanmıştır. Bu örnek toplayıcı karındanbacaklılar, solucan, sülük, su kenesi ve kayronomid larvası gibi ağır hareket eden veya sedenter hayvanları yakalamada daha etkin olmuştur (P

Durgun Su littoral makrofit bölgesinde modifiye edilmiş Gerking örnek toplayıcı ve swept netin (Trap) örnekleme etkinliği üzerine pilot bir çalışma

Modified Gerking box sampler is one of devices used for the collection of aquatic phytophilous macroinvertebrates. The presented modification consists of a metallic frame box and a movable cutter. It was constructed for sampling in hard emergent littoral macrophyte beds. In this pilot study, its efficiency was compared with a frequently used sweep net. Comparative sampling was performed in the same mesohabitat of hard emergent vegetation in littoral zones of three carp ponds during one season (late summer). Sampling with the frame box sampler was more labour consuming, but significantly (P<0.05) more effective in capturing slow-moving or sedentary animals such as gastropods, oligochaetes, leeches, water mites, and chironomid larvae. In contrast, fast-moving invertebrates (water bugs, chaoborid larvae) were significantly (P<0.05) less abundant in samples taken by the frame box compared with sweep net samples. The composition of macroinvertebrate fauna and total numbers of captured individuals varied between methods and among sampling sites. The results showed that the modified Gerking sampler is able to collect all principal higher taxa and, therefore, it is suitable for quantitative monitoring of macroinvertebrates in littoral zones of standing water bodies. Complementary sampling with a sweep net at the same localities is recommendable for better biodiversity assessment.

___

  • Becerra Jurado, G., Masterson, M., Harrington, R. and Kelly-Quinn, M. 2008. Evaluation of sampling methods for macroinvertebrate biodiversity estimation in heavily vegetated ponds. Hydrobiologia, 597: 97– 107.
  • Burton, T.M., Stricker, C.A. and Uzarski, D.G. 2002. Effects of plant community composition and exposure to wave action on invertebrate habitat use of Lake Huron coastal wetlands. Lakes and Reservoirs: Research and Management, 7: 255–269.
  • Butler, R.G. and de Maynadier, P.G. 2008. The significance of littoral and shoreline habitat integrity to the conservation of lacustrine damselflies (Odonata). J. Insect Conserv., 12: 23–36.
  • Cheal, F., Davis, J.A., Growns, J.E., Bradley, J.S. and Whittles, F.H. 1993. The influence of sampling method on the classification of wetland macroinvertebrate communities. Hydrobiologia, 257: 47–56.
  • Dibble, E.D. and Harrel, S.L. 1997. Largemouth bass diets in two aquatic plant communities. J. Aquat. Plant Manage., 35: 74–78.
  • Directive 2000/60/EC. Establishing a framework for community action in the field of water policy. European Commission PE-CONS 3696/1/100 Rev 1. Luxembourg.
  • Downing, J.A. 1984. Sampling the benthos of standing waters. In: J.A. Downing and F.H. Rigler (Eds.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, IBP Handb. No. 17, 2nd edition, Blackwell Scientific Publications, Oxford: 87–130.
  • Downing, J.A. and Cyr, H. 1985. Quantitative Estimation of Epiphytic Invertebrate Populations. Can. J. Fish. Aquat. Sci., 42: 1570–1579.
  • Dromgoole, F.I. and Brown, J.M.A. 1976. Quantitative grab sampler for dense beds of aquatic macrophytes. N. Z. Journal of Marine and Freshwater research, 10: 109– 118.
  • Dvořák, J. 1978. Macrofauna of invertebrates in helophyte communities. In: D. Dykyjová and J. Květ (Eds), Pond Littoral Ecosystems. Structure and Functioning. Ecological Studies, Springer Verlag, New York: 28: 389–392.
  • Dvořák, J. and Imhof, G. 1998. The role of animals and animal communities in wetlands. In: D.F. Westlake, J. Květ and A. Szczepański (Eds), The Production Ecology of Wetlands. The IBP Synthesis, Cambridge University Pres, Cambridge: 211–318.
  • Fishar, M.R. and Williams, W.P. 2006. A feasibility study to monitor the macroinvertebrate diversity of the River Nile using three sampling methods. Hydrobiologia, 556: 137–147.
  • García-Criado, F. and Trigal, C. 2005. Comparison of several techniques for sampling macroinvertebrates in different habitats of a North Iberian pond. Hydrobiologia, 545: 103–115.
  • Gates, T.E., Baird, D.J., Wrona, F.J. and Davies, R.W. 1987. A device for sampling macroinvertebrates in weedy ponds. J. N. Am. Benthol. Soc., 6: 133–139.
  • Gerking, S.D. 1957. A method of sampling the littoral macrofauna and its application. Ecology, 38: 219– 226.
  • Gillespie, D.M. and Brown, C.J.D. 1966. A quantitative sampler for macroinvertebrates associated with aquatic macrophytes. Limnol. Oceanogr., 11: 404– 406.
  • Hyvönen, T. and Nummi, P. 2000. Activity traps and the corer: complementary methods for sampling aquatic invertebrates. Hydrobiologia, 432: 121–125.
  • Kajak, Z. 1971. Benthos of standing water. In: W.T. Edmondson and G.G. Winberg (Eds.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Handb. 1st Edn., Blackwell Scientific Publications, Edinburgh: 25–65.
  • Kaminski, R.M. and Murkin, H.R. 1981. Evaluation of two devices for sampling nektonic invertebrates. J. Wildl. Manage., 45: 493–496.
  • Kornijów, R. 1987. Nowy typ aparatu do pobierania próbek fauny zasiedlajacej elodeidy. [New type of apparatus for sampling fauna inhabiting the elodeids]. Wiadomośći ekologiczne, 33: 175–178. (In Polish with English summary)
  • Kornijów, R. and Kairesalo, T. 1994. A simple apparatus for sampling epiphytic communities associated with emergent macrophytes. Hydrobiologia, 294: 141–143.
  • Kořínková, J. 1971. Sampling and distribution of animals in submerged vegetation. Věstník Českoslov. Spol. Zool., 35: 209–221.
  • Kuflikowski, T. 1970. Fauna in vegetation in carp ponds at Goczalkowice. Acta Hydrobiol., 12: 439–456.
  • Květ, J. and Westlake, D.F. 1998. Primary production in wetlands. In: D.F. Westlake, J. Květ and A. Szczepański (Eds), The Production Ecology of Wetlands. The IBP Synthesis, Cambridge University Pres, Cambridge: 78-168.
  • Macan, T.T. 1977. A twenty-year study of the fauna in the vegetation of a moorland fishpond. Arch.Hydrobiol., 81: 1-24.
  • Mittelbach, G.G. 1981. Patterns of invertebrate size and abundance in aquatic habitats. Can. J. Fish. aquat. Sci., 38: 896-904.
  • Muzaffar, S.B. and Colbo, M.H. 2002. The effects of sampling technique on the ecological characterization of shallow, benthic macroinvertebrate communities in two Newfoundland ponds. Hydrobiologia, 477: 31-39.
  • O´Connor, A.O., Bradish, S., Reed, T., Moran, J., Regan, E., Visser, M., Gormally, M. and Skeffington, M.S. 2004. A comparison of the efficacy of pond-net and box sampling methods in turloughs - Irish ephemeral aquatic systems. Hydrobiologia, 524: 133-144.
  • Olson, M.H., Mittelbach, G.G. and Osenberg, C.W. 1995. Competition between predator and prey: resourcebased mechanisms and implications for stagestructured dynamics. Ecology, 76: 1758-1771.
  • Rozkošný, R. (Ed.) 1980. Klíč vodních larev hmyzu. (The determination key on aquatic insect larvae.) ČSAV, Academia, Praha, 521 pp.
  • Ward, J.V. 1992. Aquatic Insect Ecology. 1. Biology and Habitat. John Wiley and Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 456 pp.
  • Zimmer, K.D., Hanson, M.A., Butler, M.G. and Duffy, W.G. 2000. Size distribution of aquatic invertebrates in two prairie wetlands, with and without fish, with implications for community production. Freshw. Biol., 46: 1373–1386.
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Effect of two dietary protein levels on body weight and composition in Channa punctatus (bloch.) fingerlings

N. K. YADAVA, Meenakshi JINDAL, K.L. JAIN, R.K. GUPTA

Effects of dietary L-carnitine supplementation on growth, muscle fatty acid composition and economic profit of rainbow trout (Oncorhynchus mykiss)

S. DİKEL, B. ÜNALAN, O. T. EROLDOĞAN, A. ÖZLÜER HUNT

Utilization of Gambusia (Affinis affinis) for fish sauce production

Sayed Mekawy IBRAHIM

İran’ın Güney kıyısında (Basra Körfezi ve Umman Denizi) bulunan imparator balığı, Lethrinus nebulous (Lethrinidae)’in bazı üreme özellikleri ve Boy-ağırlık ilişkisi

Seyyed Amin Taghavi MOTLAGH, Arezoo VAHABNEZHAD, Jafar SEYFABADI, Mehdi Ghodrati SHOJAEI, Maryam HAKIMELAHI

Life-history aspects of Caspian shemaya alburnus chalcoides in two south Caspian Rivers (Siahroud and Gorganroud)

R. PATİMAR, M. EZZATİ, J. SARLİ

Feeding Habits of Tench (Tinca tinca L., 1758) in Beyşehir Lake (Turkey)

Ali ALAŞ, Ahmet ALTINDAĞ, Muhittin YILMAZ, M. Ali KIRPIK, Akif AK

Effects of hazelnut meal levels on growth performance, feed utilization and digestibility in juvenile rainbow trout (Oncorhynchus mykiss)

Gaye DOĞAN, Muammer ERDEM

Morphologic and habitat characteristics of Black Sea’s endemic goby Neogobius platyrostris (Gobiidae)

Semih ENGİN, Yusuf BEKTAŞ

Trace metal contents in fish species from Ataturk Dam Lake (Euphrates, Turkey)

Özkan ÖZDEN, Sühendan MOL, S. Ahmet OYMAK

Heat shock protein genes in Fish

Figen Esin KAYHAN, Belgin DUMAN SÜSLEYİCİ