Mitochondrial cytochrome b sequence variation in three sturgeon species (A. stellatus Pallas, 1771, A. gueldenstaedtii Brandt, 1833, H. huso Linnaeus, 1758) from the Black Sea coasts of Turkey

Mersin balıklarının Tethis Denizi kökenli olduğu ve farklılaşma merkezinin Karadeniz olduğu dü şünüldüğünde Türkiye çok önemli bir yere sahiptir. Karadeniz’deki mersin balığı türleri hakkında yapılmış çalışmalar bulunmasına rağmen Türkiye kıyılarından örnekleme yapılmamıştır. 2005-2007 yılları arasında Türkiye kıyılarından örneklenen 3 türe ait (Acipenser stellatus, A. gueldenstaedtii, H. huso) 28 örnekte Cyt-b geni (1141bp) sekans verilerinden genetik mesafeler ve filogenetik dendogramlar oluşturulmuş ve kladistik analizler yapılmıştır. Cyt-b geninde 19 haplotip ve %81,8-96,4 arasında değişen haplotip çeşitliliği belirlenmiştir. A+T oranı tüm türler için %52,6 ile 53,8 arasında bulunmuştur. Ti/Tv oranı A. gueldenstaedtii’de (9:1), A. stellatus’ta (7:2) ve Huso huso için (6:0) olarak bulunmuştur. Nükleotid çeşitlili ği ve nükleotid farklılığının sırasıyla %0,167-%0,378 ve 1,89–4,2 arasında değiştiği belirlenmiştir. Türler arası mesafe Kimura-2 parametresine göre hesaplanmıştır (%1,258–5,288). Filogenetik ağaçlar sonucunda %100’lük seç-bağla değeri ile türler ayrılmıştır. A. gueldenstaedtii örneklerinin hepsi Karadeniz soy grubu içerisinde yer aldığı ve 2 farklı gruba (A ve B) ayrıldığı belirlenmiştir. Benzer olarak A. stellatus örneklerinin de 2 gruba ayrıldığı tespit edilmiştir. Buna karşın, H. huso örneklerinde ayrılma görülmemiştir.

Karadeniz’in Türkiye kıyılarında dağılım gösteren üç Mersin balığı türünün (Acipenser stellatus, acipenser gueldenstaedtii, Huso huso) mitokondriyal sitokrom b sekans varyasyonu

It has been assumed that sturgeons originated in the Tethys Sea, and the Black Sea is their most important diversification center. Hence Turkey has had a significant place throughout history. Although there are some genetic studies about sturgeon species that inhabit the Black Sea, these studies have not included samples from Turkey. In this study, the phylogenetic relationship, cladistic positions, and genetic variations were determined from the Cyt-b (1141bp) mtDNA of 3 sturgeon species (n = 28), collected from Turkish coast of the Black Sea between 2005 and 2007. Nineteen haplotypes, and haplotype diversity ranging from 81.8% to 96.4%, were detected from Cyt-b sequences. Studied A+T rates were found between 52.6 and 53.8% for all species. Ti/Tv rates were estimated for each species: A. gueldenstaedtii (9:1), A. stellatus (7:2), and H. huso (6:0). Nucleotide diversity and nucleotide differences calculated for three species varied from 0.167- 0.378% and 1.89-4.2, respectively. Genetic distances were calculated (1.258-5.288%). Each species was separated by phylogenetic reconstruction with a high bootstrap value (100%). All A. gueldenstaedtii samples replaced in the Black Sea Lineage Group and were separated into 2 clades (A and B). Similarly, A. stellatus samples were separated into 2 clades, but H. huso samples were not separated.

___

  • Akaike, H. 1974. A New Look at The Statistical Model Identification. IEEE Trans Autom Contr., 19, 716– 723. doi:10.1109/TAC.1974.1100705
  • Almodovar, A. Machordom, A. and Suarez, J. 2000. Preliminary Results from Characterization of The Iberian Peninsula Sturgeon Based on Analysis of the mtDNA Cytochrome b. Boletín Instituto Español De Oceanografia, 16: 17–27.
  • Apostolidis, A.P. Triantaphyllidis, C., Kouvatsi, A. and Economidis, P. S. 1997. Mitochondrial DNA Sequence Variation and Phylogeography Among Salmo truta L. (Greek Brown Trout) Populations. Mol. Ecol., 6: 531-542. doi: 10.1046/j.1365- 294X.1997.d01-176.x
  • Arkhipov, S. A., 1998. Stratigraphy and Palaeogeography of the Sartan glaciation in west Siberia, Quat. Int., 45, 29–42. doi:10.1016/S1040-6182(97)00004-9
  • Artyukhin, E.N. 1995. On The Biogeography and Relationships within the Genus Acipenser. Sturg. Quart, 3: 6-8.
  • Bemis, W.E. and Kynard, B. 1997. Sturgeon Rivers: An Introduction to Acipenseriform Biogeography and Life History. Env. Biol. Fish, 48: 167-183. doi: 10.1007/0-306-46854-9_8
  • Bemis, W. E., Findeis, E. K. and Grande, L. 1997. An overview of Acipenseriformes. Env. Biol. Fish., 48, 25-71. doi: 10.1023/A:1007370213924
  • Bernatchez, L. and Danzmann, R.G. 1993. Congruence in Control region Sequence and Restriction-Site Variation in Mitochondrial DNA of Brook Charr (Salvelinus fontinalis Mitchill). Mol. Biol. Evol., 10: 1002-1014.
  • Birstein, V. J., Hanner, R. And Desalle, R. 1997a. Phylogeny of the Acipenseriformes: cytogenetic and moleculer approaches. In: Sturgeon Biodiversity and Conservation. (V.J. Birstein, J.R. Waldman and W Bemis eds.). Kluwer Academic Publisihers, Dordrecht, 127-155.
  • Birstein, V. J., Bemis, W. E. and Waldman, J. R. 1997b. The Threatened Status of Acipenseriform Species: A Summary. Env. Biol. Fish, 48: 427-435. doi: 10.1023/A:1007382724251
  • Birstein, V. J. and Desalle, R. 1998. Molecular Phylogeny of Acipenserinae. Mol. Phylogen. Evol, 9: 141-155. doi: 10.1006/mpev.1997.0443
  • Birstein, V. J., Betts, J. and Desalle, R. 1998a. Molecular Identification of Acipenser sturio Specimens: A Warning Note for Recovery Plans. Biol. Conserv, 84: 97-101. doi: 10.1016/S0006-3207(97)00091-8
  • Birstein, V. J., Doukakis, P., Sorkin, B. and Desalle, R. 1998b. Population Aggregation Analysis of Three Caviar-Producing Species of Sturgeons and Implications for the Species Identification of Black Caviar. Cons. Biol, 12: 766-775. doi: 10.1111/j.1523- 1739.1998.97081.x
  • Birstein, V. J. and Doukakis, P. 2000. Molecular analysis of Acipenser sturio L., 1758 and Acipenser oxyrinchus Mitchill, 1815: A review. Bol. Inst. Esp. Oceanogr. 16(1-4): 61-73.
  • Birstein, V. J., Doukakis, P. and Desalle, R. 2000. Polyphyly of mtDNA lineages in the Russian sturgeon, Acipenser gueldenstaedtii: Forensic and Evolutionary implications. Cons. Gen., 1: 81-88. doi: 10.1023/A:1010141906100
  • Brito, R.M., Briolay, J. Galtier, N. Bouvet, Y., Coelho, M.M. 1997. Phylogenetic Relationships within GenusLeuciscus (Pisces, Cyprinidae) in Portuguese Fresh Waters, Based on Mitochondrial DNA Cytochromeb Sequences. Molecular Phylogenetics and Evolution, 8(3): 435–442. doi: 10.1006/mpev.1997.0429.
  • Brown, J. R., Beckenbach, A. T. and Smith, M. J. 1992. Influence of Pleistocene Glaciations and Human Intervention Upon Mitochondrial DNA Diversity in White Sturgeon (Acipenser transmontanus) Populations. Can. J. Fish. Aquat. Sci, 49: 358-367. doi: 10.1139/f92-041
  • Cantatore, P., Roberti, M., Pesole, G., Ludovico, A., Milella, F., Gadaleta M. N. and Saccone, C. 1994. Evolutionary Analysis of Cytochrome b Sequences in Some Perciformes: Evidence for a Slower Rate of Evolution than in Mammals. J. Mol. Evol, 39: 589- 597. doi: 10.1007/BF00160404
  • Chikhachev, A. S. 1983. Monitoring the genetic structure of populations and hybridizations of valuable fish species in artificial culture. In Biological fundamentals of fish culture: problems of genetics and selection. Leningrad, Nauka, 91-102 pp.
  • Comincini, S., Lanfredi, M., Rossi, R. and Fontana, F. 1998. Use of RAPD markers to determine the genetic relationships among sturgeons (Acipenseridae, Pisces). Fisheries Science 64: 35-38.
  • Congiu, L., Dupanloup, I., Patarnello, T., 2001. Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon. Molecular Ecology, 10: 2355-2359. doi:10.1046/j.0962-1083.2001.01368.x
  • DeSalle, R. and Birstein, V.J. 1996. PCR identification of black caviar. Nature 381: 197-198. doi:10.1038/381197a0
  • Doukakis, P. 2000. Systematics and Conservation Genetics of Sturgeons (Order: Acipenseriformes), phD Thesis, Yale University.
  • Ferguson, A., Taggart, J.B., Prodohl, P. A., McMeel, O., Thompson, C., Stone, C., McGinnity, P., & Hynes, R. A. 1995. The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo. Journal of Fish Biology, 47: 103-126. doi: 10.1111/j.1095- 8649.1995.tb06048.x.
  • Findeis, E.K. 1997. Osteology and Phylogenetic Interrelations of Sturgeons (Acipenseridae). Env. Biol. Fish., 48: 73-126. doi:10.1007/0-306-46854-9_5
  • Geldiay, R. and Balık, S. 1996. Türkiye Tatlısu Balıkları. Ege Ünv. Su Ürünleri yayın No: 46, Ege Ünv. II. Baskı. Basımevi, İzmir, 519 pp.
  • Gharaei, A., Pourkazemi, M., Rezvani, S. and Mojazi Amiri, B. 2005. Genetic differences and resemblance between Acipenser persicus and Acipenser gueldenstaedtii by means of RAPD technique. Iranian Scientific Fisheries Journal, 14: 91-102
  • Grande, L. and Bemis, W. E. 1991. Osteology and Phylogenetic Relationships of Fossil and Recent Paddlefishes (Polyodontidae) with Comments on the Interrelationships of Acipenseriformes. J. Vertebr. Paleo, 11: 1-121. doi:10.1080/02724634.1991. 10011424
  • Grant, W.S. and Bowen, B.W. 1998. Shallow Population Histories in Deep Evolutionary Lineages of Marine Fishes: Insights from Sardines and Anchovies and Lessons for Conservation. J. Hered., 89: 415–426. doi:10.1093/jhered/89.5.415
  • Hall, T.A. 1999. Bioedit: A User-Friendly Biological Sequence Alignment Editor and Nalysis Program For Windows 95/98/NT. Nucl. Acids. Symp. Ser, 41: 95 -98.
  • Huelsenbeck, J.P. and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. doi:10.1093/ bioinformatics/17.8.754
  • Ivanenkov, V. V. and Kamshilin, I. N. 1991. On the possibility of using albumin fractions of sturgeons as genetic markers for population studies. Voprosy Ikhtiologii, 31: 234-232.
  • Jenneckens, I., Meyer, J. N., Debus, L., Pitra C. and Ludwig A. 2000. Evidence of Mitochondrial DNA Clones of Siberian sturgeon, Acipenser baerii, within Russian sturgeon, Acipenser gueldenstaedtii. Ecol. Lett., 3: 503–508. doi:10.1111/j.1461-0248.2000. 00179.x
  • Jenneckens, I., Meyer, J. N., Hörstgen-Schwark, G., May, B., et al. 2001. A fixed allele at microsatellite LS-39 is characteristic for the black caviar producer Acipenser stellatus. Journal of Applied Ichthyology, 17: 39-42. doi:10.1046/j.1439-0426.2001.00234.x
  • Johns, G. C. and Avise, J. C. 1998. A comparative summary of genetic distances in the vertebrates from the mithocondrail cytochrome b Gene. Mol. Biol. Evol., 15: 1481-1490. doi:10.1093/oxfordjournals.molbev.a025875
  • Kimura, M. 1980. A Simple Method for Estimating Evolutionary Rates of Base Substitutions Through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 16, 111–120. doi:10.1007/BF01731581
  • Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villablanca, F.X. and Wilson, A.C. 1989. Dynamics of mitochondrial DNA sequence evolution in animals. Proc. Natl. Acad. Sci. USA, 86: 6196- 6200. doi: 10.1073/pnas.86.16.6196.
  • Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163. doi:10.1093/bib/5.2.150
  • Kuz’min, Y. V. 1991. Comparative study of isozymes of muscle malate dehydrogenase of the Ob population of the Siberian sturgeon, Acipenser baerii, and the Don and Kama Sterlet, A. ruthenus. Voprosy Ikhtiologii, 31: 139-144.
  • Kuz’min, Y. V. 1994. Comparative Analysis of the Fractional Composition of Sarcoplasmic Muscle Proteins of Different Representatives of Sturgeon (Acipenseridae). J. Icht., 34: 111-124.
  • Kuz’min, Y. V. 2002. Allozyme Variation of Nonspecific Esterases in Russian Sturgeon Acipenser güldenstädti Br Comparative Analysis of the Fractional andt. Russian Journal of Genetics, 38(4): 408-414.
  • Laukhin, S. A. 1997. The Late Pleistocene Glaciation in the Northern Chukchi Peninsular. Quaternary International, 41-42: 33-41. doi:10.1016/S1040- 6182(96)00034-1
  • Ludwig, A., May, B., Debus, L.and Jenneckens, I. 2000. Heteroplasmy in the mtDNA Control Region of Sturgeon (Acipenser, Huso, and Scaphirhynchus). Genetics, 156: 1933–1947.
  • Ludwig, A., Debus, L. and Jenneckens, I. 2002. A molecular approach for trading control of black caviar. International Review of Hydrobiology, 87: 661-674.
  • Ludwig, A., Sebastian, L., Lutz, D., Ralf, R. 2002. First evidence of hybridization between endangered sterlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River Arne. Biol Invasions, 11: 753-760. doi: 10.1007/s10530-008- 9289-z
  • Ludwig, A. 2006. A sturgeon view on conservation genetics. European Journal of Wildlife Research. 52:3-8. doi:10.1007/s10344-005-0006-2
  • Mayden, R.L. and Kuhajda, B.R. 1996. Systematics Taxonomy and Conservation Status of the Endagered Alabama Sturgeon Scaphirhynchus suttkusi Williams and Clemmer (Actinopterygii, Acipenseridae). Copeia 2: 241-273. doi:10.2307/1446842
  • Meyer, A. 1993. Evolution of Mitochondrial DNA in Fishes. Bioc. and Mol. Biol. Fish., 2: 1-38.
  • Moghim, M., Heist, E.J., Tan S. G. , Pourkazemi, M., Siraj, S.S., Panandam, J.M., Pourgholam, R., Kor, D., Laloei, F. and Taghavi, M. J. 2012. Isolation and characterization of microsatellite loci in the Persiansturgeon (Acipenser persicus, Borodine, 1897) and cross-speciesamplification in four commercial sturgeons from the Caspian Sea. Iranian Journal of Fisheries Sciences 11(3): 548-558.
  • Mugue, N., Barmintseva, A. E., Rastorguev, S. M., Mugue, V. N. and Barmintsev, V. A. 2006. Sturgeon mtDNA control region polymorphism and its suitability for species identification. 2ndWorkshop. Identification of Acipenseriformes Species in Trade. Berlin, 29th Sep. - 1st Oct. 2006: 9-10.
  • Nuin, P. 2008. MrMTgui: cross-interface for ModelTest and Mr Modeltest; “http://www.genedrift.org/mtgui.php”.
  • Nylander, J.A.A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
  • Orti, G., Bell, M.A., Reimchen, T.E. and Meyer, A. 1994. Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution, 48: 608-622. doi: 10.2307/2410473.
  • Peng, Z., Ludwig, A., Wang, D., Diogo, R., Wie, Q. and He, S. 2007. Age and Biogeography of Major Clades in Sturgeons and Paddlefishes (Pisces: Acipenseriformes). Mol. Phyl. Evol., 42: 854-862. doi:10.1016/j.ympev.2006.09.008
  • Posada, D. and Crandall, K. A. 1998. Modeltest: Testing The Model of DNA Substitution. Bioinformatics, 14: 817-818. doi:10.1093/bioinformatics/14.9.817
  • Pourkazemi, M. 1996. Molecular and biochemical genetic analysis of sturgeon stocks from the South Caspian Sea. Ph.D. thesis. University of Wales, Swansea.
  • Rehbein, H. 1997. Fischartbestimmung von Caviar durch Protein- und DNA-Analyse. Informationen der Fischwirtschaft, 44: 27-30.
  • Ronquist, F. and Huelsenbeck, J. P. 2003. Mr Bayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574. doi:10.1093/bioinformatics/btg180
  • Rozas, J. and Rozas, R. 1999. DnaSP Version 3: An Integrated Program for Molecular Population Genetics and Molecular Evolution Analysis. Bioinformatics, 15: 174-175. doi:10.1093/bioinformatics/15.2.174
  • Ruban, G. I. 1997. Species Structure, Contemporary Distributiona and Status of the Siberian sturgeon, Acipenser baerii. Environ. Biol. Fish., 48, 221–230. doi:10.1007/0-306-46854-9_12
  • Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, vol. I. 2nd edition, Cold Spring Harbor Laboratory Press.
  • Schneider, S., Roessli, D., Excoffier, L. 2000. ARLEQUIN: Software for Population Genetics Data Analysis (version 2.000). http://lgb. unige.ch/arlequin/.
  • Schwarz, G. 1978. "Estimating the Dimension of a Model". Annals of Statistics, 6: 461-464. doi:10.1214/aos/1176344136
  • Simon, C. 1991. Molecular systematics at the species boundary: exploiting conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA. In: G.M. Hewitt, A.W.B. Johnston, J.P.W. Young, (Eds.), Molecular Techniques in Taxonomy. Springer-Verlag. New York: doi:10.1007/978-3-642-83962-7_4
  • Stabile, J., Waldman, J. R., Parauka, F. and Wirgin, I. 1996. Stock Structure and Homing Fidelity of Gulf Sturgeon (Acipenser oxyrinchus desotoi) Based on Restriction Fragment Length Polymorphism and Sequence Analyses of Mitochondrial DNA. Genetics, 144: 767-775.
  • Stepien, C.A. and Kocher, T.D. 1997. Molecules and morphology in studies of fish evolution. Pp. 1-11 in Molecular Systematics of Fishes, In: T.D. Kocher, C.A. Stepien (Eds), Academic Press. doi: 10.1016/B978-012417540-2/50002-6.
  • Swofford, D.L. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4.0b 10. Sinauer Associates, Sunderland, Massachusetts.
  • Tajima, F. 1983 Evolutionary Relationship of DNA Sequences in Finite Populations. Genetics, 105: 437- 460.
  • Tamura, K. and Nei, M., 1993. Estimation of the Number of Nucleotide Substitutions in the Control Region of the Mitochonrial DNA in Human and Chimpanzees. Mol. Biol. and Evol., 10: 512-526.
  • Timoshkina, N. N., Vodolazhskii, D. I. and Usatov, A. V. 2011. Molecular-genetic markers in studies of intra- and interspecies polymorphism in sturgeon (Acipenseriformes). Russian Journal of Genetics: Applied Research, 1(2): 160-171. doi:10.1134/S2079059711020122
  • Vlasenko, A. D., Pavlov, A.V., Sokolov, L. I. and Vasıl'ev, V. P. 1989. Acipenser gueldenstaedtii Brandt 1833. In: The Freshwater Fishes of Europe (Holcík J. Hrsg.), AULA-Verlag Gmbh, Wiesbaden: 294-344.
  • Voynova, N.V., Mirzoyan, A.V, Timoshkina, N. N and Rynza, E. T. 2008. Occurrence of Non-notive Specimens of Caspian Origin within the Sea of Azov population of the Russian sturgeon (Acipenser gueldenstaedtii). J. App. Icht., 24: 50-51. doi:10.1111/j.1439-0426.2008.01090.x
  • Williot, P., Arlati, G., Chebanov, M., Gulyas, T., Kasimov, R., Kirschbaum, F., Patriche, N., Pavlovskaya, L. P., Poliakova, L., Pourkazemi, M., Kim, Y., Zhuang, P. and Zholdasova, I. M. 2002. Status and management of Eurasian sturgeon: an overview. International Reviews in Hydrobiology, 87(5-6): 483-506.
  • Wolf, C., Hübner, P. and Lüthy, J. 1999. Differentiation of sturgeon species by PCR-RFLP. Food Research International, 32: 699-705. doi:10.1016/S0963- 9969(99)00150-7
  • Zardoya, R., Doadrio, I.1999. Molecular Evidence on the Evolutionary and Biogeographical Patterns of European Cyprinids. Journal of Molecular Evolution, 49: 227-237. doi: 10.1007/PL00006545.
  • Zhu, B., Zhou, F., Cao, H., Shao, Z., Zhao, N., May, B., and Chang, J. 2002. Analysis of genetic variation in the Chinese sturgeon, Acipenser sinensis: estimating the contribution of artificially produced larvae in a wild population. J. App. Icht., 18: 301–306. doi:10.1046/j.1439-0426.2002.00379.x
  • Zuckerkandl, E. and Pauling, L.1965. Evolutionary divergence and convergence in proteins, Evolving Genes and Proteins, edited by V. Bryson and H.J. Vogel. Academic Press, New York, 97-166 pp.
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Comparison of nutrition compositions of juvenile paddlefish (Polyodon spathula) fed with Live feed and formula feed

Pei-Song SHI, Yu-Ting ZHU, Qin WANG, Qian-Hong GU, Bang-Xi XIONG

The influence of the moon phase on the CPUEs of swordfish gillnet fishery in the aegean sea, Turkey

OKAN AKYOL

Characterization and nutritional quality of formic acid silage developed from Marine fishery waste and their potential utilization as feed stuff for common carp Cyprinus carpio fingerlings

Ramasamy RAMASUBBURAYAN, Palanisamy IYAPPARAJ, Kanaharaja Joselin SUBHASHINI, Manohar Navin CHANDRAN, Arunachalam PALAVESAM, Grasian IMMANUEL

Partial replacement of fish meal with spirulina pacifica in diets for parrot fish (oplegnathus fasciatus)

Sung-Sam KIM, Samad RAHIMNEJAD, Kang-Woong KIM, Kyeong-Jun LEE

Sea cucumber meal as alternative protein source to fishmeal in gilthead sea bream (sparus aurata) nutrition: Effects on growth and welfare

Manuela PICCINNO, Roberta SCHIAVONE, Loredana ZILLI, Benedetto SICURO, Carlo STORELLI, Sebastiano VILELLA

Feasibility of identification of fall and spring migrating Caspian trout (Salmo trutta caspius) by using AFLP molecular marker

Ensieh Habibi, Mohammad Reza KALBASSİ, Seyed Javad HOSSEINI, Seyed Ahmad QASEMI

Thermal tolerance, oxygen consumption and stress respThermal Tolerance, oxygen consumption and stress response in Danio dangila and Brachydanio rerio (Hamilton, 1822) Acclimated to Four Temperaturesonse in Danio dangila and Brachydanio rerio (Hamilton, 1822) acclimated to four temperatures

Sullip Kumar MAJHI, Sanjay Kumar DAS

DNA Barcoding resolves taxonomic ambiguity in mugilidae of parangipettai waters (southeast coast of india)

M. Ashiq Ur RAHMAN, S. Ajmal KHAN, P. S. LYLA, C. Prasanna KUMAR

Immunohistochemical and partial characterization studies of carbonic anhydrase in the brain of teleost fish Cyprinus carpio

S. M. RAHIM, S. J. ABDURRAHMAN, E. M. TAHA, H. F. HASSAN, K. D. SIMON, A. G. MAZLAN

Testing the sensitivity of the length-converted catch method using the Bigeye Tuna Thunnus obesus (Scombridae) population parameters

Chia Lung SHIH