POSSIBILITY OF COMBINING HIGH YIELD AND RESISTANCE TO FUSARIUM WILT DISEASE USING MOLECULAR MARKERS IN 4 ÉLITE SESAME LINES

Developing a high yielding variety connected with stress-resistant in sesame is a viable option to address the adverse effects of climate change. The objectives of this study were to identify high-yielding and to detect some molecular markers associated with Fusarium wilt resistance in sesame. Five genotypes were evaluated based on seed yield ha-1 over three growing seasons (2016-2018) at two sites, Al-Nubaria (2016-2018) and Abu- Hammad (2016) in Egypt. Twenty RAPD and five ISSR primers used to detect some markers linked to Fusarium wilt resistance. Genotypes and environments and interaction between them showed high significant variation (p<0.05) for seed yield ha-1. The mean performance of the lines C1.5, C3.8, C6.3, and C1.6, for seed yield ha-1 were higher than check variety by 3.4, 2.8, 0.5 and, 16.7%. Line C1.6 achieved less value of the standard deviation of ranks, based on seed yield ha-1, through environments, indicating that it was less affected by environmental conditions. Molecular marker analysis revealed eight markers linked to Fusarium wilt resistance, they are seven positive markers (five RAPD and two ISSR) which were found in the line C3.8 and absent in the check variety. Finally, both C1.6 and C3.8 offering prospects to form new varieties sesame having high-yield and Fusarium wilt disease resistance.

___

  • Admas, A., P. Yohannes and K. Tesfaye. 2013. Genetic distance of sesame (Sesamum indicum L.) varietys and varieties from Northwestern Ethiopia using inter simple sequence repeat markers. East Afric. J. Sci. 7:31-40.
  • Ahmad, F., A. Akram, K. Farman, T. Abbas, A. Bibi, S. Khalid, and M. Waseem. 2017. Molecular markers and marker-assisted plant breeding: Current status and their applications in agricultural development. J. of Envi. and Agric. Sci. 11: 35-50.
  • Ahmed, M. B. S.and F. A. Ahmed. 2012. Genotype × season interaction and characters association of some sesame (Sesamum indicum L.) genotypes under rainfed conditions of Sudan,” Afric. J. Plant Sci. 6:39–42.
  • Anilakumar, R. K., A. Pal, F. Khanum and S. A. Bawa. 2010. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds.Agric. Consp. Sci. Cus. 75:159-168.
  • Anitha, B.K., N. Manivannan, P. Vindhiyavarman, C. Gopalakrishnan and K. Ganesamurthy. 2010. Molecular diversity among sesame varieties of Tamil Nadu. J. Plant Breed. 1: 447- 452.
  • Anter, A.S. and A.A. Ashraf. 2014. Evaluation performance of new sesame (Sesamum indicum L.) lines under normal and drought conditions. Mid. East J. Agric. Res. 7:1411-1418. Baraki, F. and M. Berhe. 2019. Evaluating performance of sesame (Sesamum indicum L.) genotypes in different growing seasons in Northern Ethiopia. Inte. J. Agro. 1-7.
  • Beckman, G.H. 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defense responses in plants? Physiological and Mole. Plant Patho. 57:101–110.
  • Bennett, R.N. and R.M. Wallsgrove. 1994. Secondary metabolites in plant defence mechanisms. New Phy. 127:617–633.
  • Boureima, S. and A. Yaou. 2019. Genotype by yield × trait combination biplot approach to evaluate sesame genotypes on multiple traits basis. Turkish Journal of Field Crops.24:237-244.
  • Boureima, S., M. Eyletters, M. Diouf, T.A. Diop and P. Van Damme. 2011. Sensitivity of seed germination and seedling radicle growth to drought stress in sesame (Sesamum indicum L.). Res. J. Envir. Sci. 5:557–564.
  • Cobb, N. J., R.U. Juma, P. S.Biswas, J.D. Arbelaez, J. Rutkoski, G. Atlin, T. Hagen, M. Quinn and E. H. Ng. 2019. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor. Appl. Gene. 132: 627–645.
  • Dar, A.A., S. Mudigunda, P.K. Mittal and N. Arumugam. 2017. Comparative assessment of genetic diversity in Sesamum indicum L. using RAPD and SSR markers. Biotech. 7: 10.
  • Dossa, K., D. Diouf, L.Wang , X. Wei, Y.Zhang, M. Niang, D. Fonceka, J.Yu, M. A. Mmadi, L.W. Yehouessi, B. Liao, X. Zhang and N. Cisse. 2017. The emerging oilseed crop Sesamum indicum Enters the “Omics” Era. Front. Plant Sci. 8:1-16.
  • El-Shakhess Samar, A.M. and M.M.A. Khalifa. 2007. Combining ability and heterosis for yield, yield components, charcoal-rot and Fusarium wilt diseases in sesame.Egypt J. Plant Breed. 11: 351-371.
  • Ercan, A.G., M. Taskin and K. Turgut. 2004. Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Gene. Resou. Crop Evolu. 51: 599-607.
  • Farajpour, M., M. Ebrahimi, R. Amiri, S.A.S. Noori, S. Sanjari and R. Golzari. 2011. Study of genetic variation in yarrow using inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) markers. Afric. J. Biotech. 10: 11137-11141.
  • Forster, B.P., B.J. Till, A.M.A. Ghanim and H.O.A. Huynh. 2014. Accelerated plant breeding. CAB Rev.9:3–15.
  • Haji-Allahverdipoor,K.,B. Bahramnejad and J. Amini. 2011. Selection of molecular markers associated with resistance to Fusarium wilt disease in chickpea (Cicer arietinum L.) using multivariate statistical techniques. Austra. J. Crop Sci. 5:1801-1809.
  • Harborne, J.B. 1999. Classes and functions of secondary products from plants. In:Chemicals from Plants, Perspectives on Secondary Plant Products, ed. Walton N.J. and Brown, D.E. 1–25, Imperial College Press,London.
  • HobAllah, A.A., A.A. Abd El-Mohsen, A.K. Abd El-Haleem and A.S.Anter. 2009. Genetic variability, for seed yield and its components in advanced segregating generations of sesame (Sesamum indicum L.). Ain shams Bulletin, Special Publication No. 6, Ain Shams Unv. Holbrook, C.C. and A.K. Culbreath. 2007. Registration of ‘Tifrunner’ Peanut. J. Plant Regist. 1:124-124.
  • John, A., N. Subbaraman and S. Jebbaraj. 2001. Genotype by environment interaction in sesame (Sesamum indicum L.): Sesame and safflower newsletter no. 16, Institute of Sustainable Agriculture, FAO, Rome.
  • Karimizadeh, R., M. Mohammadi, N. Sabaghnia and M.K. Shefaza-deh. 2012. Using Huehn’s nonparametric stability statistics to investigate genotype × environment interaction. Notu. Botan. Horti. Agrobot. Cluj-Napoca. 40:195-200.
  • Kebede, G., G. Assefa, F. Feyissa, M. Alemayehu, A. Mengistu, A. Kehaliew, K.Melese, S. Mengistu, E. Tadesse, S. Wolde and M. Abera. 2017. Genotype_environment interaction and stability analysis for dry matter yield of napier grass (Pennisetum purpureum L.) genotypes tested across diverse environments in Ethiopia. Omo Inte. J. Sci. 1: 1–14.
  • Khalifa, M.M.A. 2003. Pathological studies on charcoal rot disease of sesame.Ph.D. Thesis. Faculty. Agric. Zagazig Uni.295 pp.
  • Kim, D.H., G. Zur, Y. Danin-Poleg, S.W. Lee, K.B. Shim,C.W. Kang and Y. Kashi. 2002. Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed. 121:259-262.
  • Kroymann, J. 2011. Natural diversity and adaptation in plant secondary metabolism. Curr. Opin Plant Biolog. 14:246–251.
  • Kumar V. and S.N. Sharma. 2011. Comparative potential of phenotypic, ISSR and SSR markers for characterization of sesame (Sesamum indicum L.) varieties from India. J. Crop Sci. Biotech. 14:163-171.
  • Kurt, C. and H. Arioglu. 2018. Assessment of genetic diversity among Turkish sesame (Sesamum indicum L.) genotypes using ISSR markers. Inter. J. Agric. and Envir. Res. 4:188-199.
  • Lenaerts, B., C.Y. Bertrand, C. Collardb and M. Demontb. 2019. Improving global food security through accelerated plant breeding. Plant Sci.278:1-8.
  • Li, D., K. Dossa, Y. Zhang, X. Wei, L. Wang, Y. Zhang, A. Liu, R. Zhou and X. Zhang. 2018. Gwas uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes. 9 :1-19.
  • Li, M. and D.J. Midmore. 1999. Estimating the genetic relationships of Chinese water chestnut (Eleocharis dulcis (Burm. f.) Hensch) cultivated in Australia, using random amplified polymorphic DNAs (RAPDs). J. Horti. Sci. Biotech. 74:224-231.
  • Maisuria, H.J., R.M. Patel and K.P. Suthar. 2017. Validation of molecular markers linked to Fusarium wilt resistance in Chickpea genotypes. Inter.J. Pure and Appl. Biosci. 5:254-260.
  • Mansour, E., E.S. Moustafa, Z. A. El-Naggar, A.A. Asmaa and I. Ernesto. 2018. Grain yield stability of high-yielding barley genotypes under Egyptian conditions for enhancing resilience to climate change. Crop and Past. Sci. 69: 681–690.
  • Misganaw, M., F. Mekbib and A. Wakjira. 2015. Genotype x environment interaction on sesame (Sesamum indicum L.) seed yield. Afric. J. Agric. Res. 10:2226–2239.
  • MSTAT-C, program. 1991. A software program for the design, management and analysis of agronomic research experiments. Michigan State Uni. Newton, C., S.N. Johnson and P.J. Gregory. 2011. Implications of climate change for diseases, crop yields and food security. Euphy. 179:3–18.
  • Orruno, E. and M.R.A. Morgan. 2007. Purification and characterization of the 7S globulin storage protein from sesame (Sesamum indicun L.). Food Chem. 100: 926–934.
  • Pandey, P., V. Irulappan, V. M. Bagavathiannan and M.Senthil-Kumar. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8, 537.
  • Parsaeian, M., A. Mirlohi and G. Saeidi. 2011. Study of genetic variation in sesame (Sesamum indicum L.) using agro-morphological traits and ISSR markers. Russ. J. Gene. 47:314-321.
  • Patel, D.M., R.S. Fougat, A.A. Sakure, S. Kumar, M. Kumar and J.G. Mistry.2016. Detection of genetic variation in sandalwood using various DNA markers. 3 Biotech. 6:2-11.
  • Poerba, Y.S. and F. Ahmad. 2010. Genetic variability among 18 varietys of cooking bananas and plantains by RAPD and ISSR markers. Biodiv. J. Biolo. Diver. 11:118-123.
  • Prabhu, K. V., A. K. Singh, S. H. Basavaraj, D. P. Cherukuri, A. Charpe, S. Gopala Krishnan, S. K. Gupta, M. Joseph, S. Koul, T. Mohapatra, J. K. Pallavi, D. Samsampour, A. Singh, V. K. Singh, A. Singh and V. P. Singh. 2009. Marker assisted selection for biotic stress resistance in wheat and rice. Indian J. Gene. 69: 305-314.
  • Prasch, C. M. and U. Sonnewald. 2013. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 162: 1849–1866.
  • Quasem, J.M., A.S. Mazahreh and K. Abu-Alruz. 2009. Development of vegetable based milk from decorticated sesame (Sesamum Indicum L.). Amer. J. Appl. Sci. 6: 888-896.
  • Quenum, F.J.B. and Q. Yan. 2017. Assessing genetic variation and relationships among a mini core germplasm of sesame (Sesamum indicum L.) using biochemical and RAPD markers. Amer. J. Plant Sci. 8:311-327.
  • Ramegowda, V. and M. Senthil-Kumar. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physio. 176: 47–54.
  • Ratnaparkhe, M.B., D.K. Santra, A. Tullu and F.J. Muehlbauer. 1998a. Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a Fusarium wilt resistance gene in chickpea. Theor. Appl. Gene. 96:348-353.
  • Ratnaparkhe, M.B., M. Tekeoglu and F.J. Muehlbauer. 1998b. Inter-simple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor. Appl. Gene. 97: 515-519.
  • Raza, A., A. Razzaq, S. S. Mehmood, X. Zou, X.Zhang, Y. Lv and J. Xu. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A Review. Plants (Basel). 8: 34.
  • Rohlf, J.F. 2000. NTSYSpc numerical taxonomy and multivariate analysis system. Version 2.1. Users Guide, Biostatistics Inc., Setauket, New York. 38 p.
  • Salahlou, R., N. Safaie and M. Shams-Bakhsh. 2019. Using ISSR and URP-PCR markers in detecting genetic diversity among Macreophomina phaseolina isolates of sesame in Iran. J. Crop Prot. 8:293-309.
  • Salme,S.R. and M.I.Cagirgan. 2010. Screening for resistance to Fusarium wilt in induced mutants and world collection of sesame under intensive management. Turkish Journal of Field Crops. 15(1): 89-93
  • Shabana, R., A.A. Abd El-Mohsen, M. M. A. Khalifa and A. A. Saber. 2014. Quantification of resistance of F6 sesame elite lines against Charcoal-rot and Fusarium wilt diseases. Adv. Agric. Biolo. 1: 144-150.
  • Singh, M., I. Chaudhuri, S.K. Mandal and R.K. Chaudhuri. 2011. Development of RAPD markers linked to Fusarium wilt resistance gene in castor bean (Ricinus communis L.). Gene. Engin. Biotech. J. 28:1-9.
  • Suja, K.P., T.J. Ohn, S.N. Abraham, A. Thamizh, A.Jayalekshmy and C. Arumughan. 2004. Antioxidant efficacy of sesame cake extract in vegetable oil protection. Food Chem. 84:393-400.
  • Taghouti, M., N. Nsarellah, F. Gaboun and A. Rochdi. 2017. Multi-environment assessment of the impact of genetic improvement on agronomic performance and on grain quality traits in Moroccan durum wheat varieties of 1949 to 2017. Glo. J. Plant Breed. Gene. 4: 394-404.
  • Tillman, B.L. and D.W. Gorbet. 2009. Registration of ‘AP-4’ Peanut. J. Plant Regist. 3:138-142. Williams,J.G., A.R. Kubelk, K.J. Livak, J.A. Rafalski and S.V.Tingey. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucl.Acids Res. 18:6531-6535.
  • Zhang, Y.X., X.R. Zhang, W. Hua, L.H. Wang and Z. Che. 2010. Analysis of genetic diversity among indigenous landraces from sesame (Sesamum indicum L.) core collection in China as revealed by SRAP and SSR markers. Genes and Geno. 32:207-215.