INTERACTION OF DZR1, OPAQUE-2 AND NORMAL ENDOSPERM MAIZE INBRED LINES FOR GRAIN YIELD AND PROTEIN QUALITY

The objectives of this study were to (i) investigate genetic relationships among high lysine (HK) (opaque-2), high methionine (HM) (dzr1) and high yielding maize inbred lines (ii) to evaluate grain yield and protein quality of hybrids produced from these germplasm groups. Fifty-six hybrids generated from an 8 × 8 full diallel mating design were tested at two locations in Turkey in 2017 and 2018. Significant reciprocal effects for lysine, methionine, lysine quality index and methionine quality index revealed that parent effects may not be ignored in breeding for these traits. Lower grain yield among crosses produced from non-normal endosperm suggested that for high yield and improved amino acid concentration at least one parent of HK or HM should be used in hybrid combinations. HM × HM hybrids were not only good for high methionine, but also high lysine and protein. Several of the experimental hybrids in this study outperformed the commercial checks in terms of lysine and methionine yield. M2 × S1 hybrid had 27 % more lysine (58.6 kg ha-1) and 26 % more methionine (42.5 kg ha-1) yield than commercial high yielding normal hybrids. This study revealed that HK and HM germplasm can be combined with adapted high yield maize inbred lines to develop high yielding, high methionine and high lysine hybrids.

___

  • AOAC International. 2002. Crude Protein in Cereal Grains and Oilseeds, Official Methods of Analysis of AOAC International. AOAC International, Washington, DC.
  • Betran, F.J., A. Bockholt, F. Fojt, L. Rooney, R. Waniska. 2003a. Registration of parental lines: Registration of T×802. Crop Sci. 43 (5): 1891–1892.
  • Betran, F.J., A. Bockholt, F. Fojt, G. Odvody. 2003b. Registration of T×807 maize line. Crop Sci. 43 (5):1892-1893.
  • Boyer, C.D. and J.C. Shannon. 1983. The use of endosperm genes for sweet corn improvement. In: Plant Breeding Reviews, ed, Janick J. Springer, Boston, MA
  • Carena, M.J. and N. Dong. 2017. The ND early QPM program: developing the next generation of healthier maize (Zea mays L.) products. Euphytica 213 (7):150.
  • Chan, P.T. and P. Matanjun. 2017. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem. 221: 302-310.
  • Darrigues, A., C. Buffard, K.R. Lamkey, M.P. Scott. 2005. Variability and genetic effects for tryptophan and methionine in commercial maize germplasm. Maydica. 50 (2):147–156.
  • Duraes, F.O.M., P.C. Magalhaes, A.C. Oliveira, M.X. Santos, E.E. Gomes, C.T. Guimares. 2002. Combining ability of tropical maize inbred lines under drought stress conditions, Crop Breed Appl Biotechnol. 2 (2):291-298.
  • Erdal, S. 2019. Determination of drought tolerance levels of maize inbred lines. Turkjans. 6 (2): 178–189.
  • Erdal, S., M. Pamukcu, A. Ozturk, K. Aydinsakir, S. Soylu. 2015. Combining abilities of grain yield and yield related traits in relation to drought tolerance in temperate maize breeding. Turk J Field Crops. 20 (2): 203-212.
  • Faountoulakis, M. and H.W. Lahm. 1998. Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A. 826 (2): 109-134.
  • Fisher, R.A. 1935. The Design of Experiments. 7th ed. London: Oliver and Boyd; New York: Hafner.
  • Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci. 9 (4):463–493.
  • Hallauer, A.R. and M.J. Carena. 2009. Maize breeding. In: Handbook of Plant Breeding: Cereals, ed, Carena M.J. Springer, New York, pp 3–98.
  • Harms, R.H. and G.B. Russell. 1998. Layer performance when returned to a practical diet after receiving an amino acid-deficient diet. J Appl Poultry Res. 7 (2):175-179.
  • Huffman, R.D., J.W. Edwards, L.M. Pollak, M.P. Scott. 2016. Interaction of genetic mechanisms regulating methionine concentration in maize grain. Crop Sci. 56 (5):1–11.
  • Krivanek, A., H. Groote, N. Gunaratna, A. Diallo, D. Freisen. 2007. Breeding and disseminating quality protein maize for Africa. Afr J Biotechnol. 6 (4): 312-324
  • Mbuya, K., K.K. Nkongolo, A. Kalonji-Mbuyi. 2011. Nutritional analysis of quality protein maize varieties selected for agronomic characteristics in a breeding program. Int J Plant Breed Genet. 5 (4): 317-327.
  • Mertz, E.T., L.S. Bates, O.E. Nelson. 1964. Mutant that changes protein composition and increases lysine content of maize endosperm. Science 145 (3629):279–280.
  • Nas, L., M. Lima, R. Vencovsky, P.B. Gallo. 2000. Combining ability of maize inbreed lines evaluation in the three environment in Brazil. Scientia Agricola 57 (1): 129-134.
  • Olsen, M.S,, T.L. Krone, R.L. Phillips. 2003. BSSS53 as a donor source for increased whole-kernel methionine in maize: Selection and evaluation of high-methionine inbreds and hybrids. Crop Sci. 43 (5):1634–1642.
  • Phillips, R.L., J. Suresh, M. Olsen, T. Krone. 2008. Registration of high-methionin versions of maize inbreds A 632, B73 and Mo17. J Plant Reg. 2(3):243-245.
  • Phillips, R.L. and B.A. McClure. 1985. Elevated protein-bound methionine in seeds of a maize line resistant to lysine plus threonine. Cereal Chem. 62 (3):213–218.
  • Ravindran, V. 2012. Poultry Feed Availability and Nutrition in Developing Countries. Food and Agriculture Organization of the United Nations, Poultry Development Review 1-4.
  • Rodriguez, F., G. Alvarado, A. Pacheco, J. Crossa, J. Burgueño. 2015. AGD-R (Analysis of Genetic Designs with R for Windows) Version 2.0. http://hdl.handle.net/11529/10202 International Maize and Wheat Improvement Center (Accessed September 15, 2017).
  • Saki, A.A., H.R. Naseri, M.M. Tabatabaei, P. Zamani, M. Haghight. 2012. Estimates of methionine and sulfur amino acid requirements for laying hens using different models. Braz J Poultry Sci.14 (3):159-232.
  • Schutte, J.B. and J. De Jong. 1999. Ideal amino acid profile for poultry. In: Feed Manufactoring in the Mediterranean Region. Recent Advances in Research and Technology, ed, Brufao, J. and Tacon, A. Zaragoza: CIHEAM - Options Mediterraneennes. 259-263
  • Scott, MP., J.M. Peterson, A.R. Hallauer. 2009. Evaluation of combining ability of quality protein maize derived from U.S. public inbred lines. Maydica 54 (4): 449-456
  • Scott, M.P., S. Bhatnagar and J. Betran. 2004. Tryptophan and methionine levels in quality protein maize breeding germplasm. Maydica 49 (2004):303–311.
  • Scott, P.M., A. Darrigues, S.S. Timothy, K. Lamkey. 2008. Recurrent selection to alter grain methionine concentration and improve nutritional value of maize. Crop Sci. 48 (5):1705–1713.
  • Steel, R.G.D. and J.H. Torrie. 1980. Principles and procedures of statistics. A biometrical approach, 2nd Edition, McGraw-Hill Book Company, New York.
  • TTSMM 2018. Maize. Technical instructions for agricultural trials in maize. https://www.tarimorman.gov.tr/BUGEM/TTSM/Belgeler/Tescil/Teknik%20Talimatlar/S%C4%B1cak%20%C4%B0klim%20Tah%C4%B1llar%C4%B1/MISIR_TEKNIK_TALIMATI.pdf (Accessed February 15, 2020, in Turkish).
  • Vasal, S.K., G. Srinivasan, S. Pandey, C.F. Gonzalez, J. Crossa, D.L. Beck. 1993. Heterosis and combining ability of CIMMYT’s quality protein maize germplasm I: Lowland tropical. Crop Sci. 33 (1):46–51.
  • Vivek, B.S., A.F. Krivanek, N. Palacios, S.T. Afriyie, A.O. Diallo. 2008. Breeding Quality Protein Maize (QPM): Protocols for Developing QPM Cultivars. Mexico, D.F: CIMMYT.
  • Wang, Y.J., P. White, L. Pollak and J. Jane. 1993. Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem. 70 (2): 171-178.