EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES

In order to evaluate the antioxidant activity of wheat in salinity stress conditions, an experiment with 27 wheatgenotypes grown on two types of soil was conducted: solonetz (increased salinity) and chernozem (control),during two vegetation seasons (2015/2016 and 2016/2017). Analysis of DPPH radical scavenging activity andphenolic content (PC) were performed in different phenophases of wheat (tillering, stem elongation andheading). Genotypes showed significantly higher DPPH radical scavenging activity (9.82 mg trolox equivalents(TE) per mg of dry matter (d.m.)) and PC (8.15 mg gallic acid equivalents (GAE) per mg d.m.) under salinitystress conditions compared to values obtained on control (8.52 mg TE mg-1 d.m. and 7.13 mg GAE mg-1 d.m.,respectively). All analyzed factors (genotype, soil type and year) had the highly significant influence onphenotypic variation of grain yield. Salinity stress reduced grain yield by 30%, whereas drought stress in2016/2017 vegetation season reduced grain yield by 20%. Highly significant and positive correlations arepresent between grain yield and parameters of antioxidant activity in all growth stages of wheat and both soilconditions. Therefore, it could be possible to select salinity tolerant genotypes in early growth stages. DPPHscavenging activity and total phenolic content are in highly significant and positive correlation in all growthstages, which indicates that antioxidant activity is highly derived by phenolics. 

___

  • Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27:84-93.
  • Azizpour, K., M.R. Shakiba, K.N. Sima, H. Alyari, M. Moghaddam, E. Esfandiari and M. Pessarakli. 2010. Physiological response of spring durum wheat genotypes to salinity. J. Plant. Nutr. 33:859-873.
  • Banjac, B. 2015. Yield potential and adaptation of wheat to stressful conditions of solonetzes: doctoral dissertation. University of Novi Sad, Faculty of agriculture, Serbia (in Serbian).
  • Barakat, N., V. Laudadio, E. Cazzato and V. Tufarelli. 2013. Antioxidant potential and oxidative stress markers in wheat (Triticum aestivum) treated with phytohormones under salt-stress condition. Int. J. Agric. Biol. 15:843-849.
  • Belić, M., Lj. Nešić, M. Dimitrijević, S. Petrović and B. Pejić. 2006. The -influence of water- physical properties changes of solonetz on the yield and yield components of wheat after phosphogypsum application. In: The natural mineral row materials and possibilities of theirs application in agricultural production and food industry, 165-177. Union of agricultural engineers and technicians of Serbia and Geological Institute, Belgrade, Serbia.
  • Belić, M., Lj. Nešić, M. Dimitrijević, S. Petrović, V. Ćirić, S. Pekeč and J. Vasin. 2012. Impact of reclamation practices on the content and qualitative composition of exchangeable base cations of the solonetz soil. Aust. J. Crop. Sci. 6:1471-1480.
  • Belić, M., Lj. Nešić, V. and Ćirić. 2014. Types of halomorphic soils. In: Repair of halomorphic soils, ed. M. Manojlović, 12-37. University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia (in Serbian).
  • Borzouei, A., M. Kafi, E. Akbari-Ghogdi and M. Mousavi-Shalmani. 2012. Long term salinity stress in relation to lipid peroxidation, superoxide dismutase activity and proline content of saltsensitive and salt-tolerant wheat cultivars. Chil. J. Agric. Res. 72:476-482.
  • Caverzan, A., A. Casassola and S. Patussi Brammer. 2016. Antioxidant responses of wheat plants under stress. Gene. Mol. Biol. 39:1-6.
  • Chernane, H., S. Latique, M. Mansori and M. El Kaoua. 2015. Salt stress tolerance and antioxidative mechanisms in wheat plants (Triticum durum L.) by seaweed extracts application. J. Agric. Vet. Sci. 8:36-44.
  • Chesworth, W. 2008. Encyclopedia of Earth Sciences Series: Encyclopedia of Soil Science. Springer, Dordrecht, Netherlands.
  • Dimitrijević, M., S. Petrović and B. Banjac. 2012. Wheat breeding in abiotic stress conditions of solonetz. Genetika, 44:91-100.
  • Dixon, J., H.J. Braun and J. Crouch. 2009. Overview: Transitioning wheat research to serve the future needs of the developing world. In: Wheat facts and futures, eds. J. Dixon, H.J. Braun, P. Kosina and J. Crouch, 1-25, D. F., CIMMYT, Mexico.
  • El-Hendawy, S.E., Y. Hu, J.I. Sakagami and U. Schimidhalter. 2011. Screening Egyptian wheat genotypes for salt tolerance at early growth stages. Int. J. Plant Prod., 5:1735-8043.
  • El-Sayed, M.D. and M.M. Abdel-Rahman. 2015. Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. J. Agric. Sci. 7:203-217.
  • Hadžić, V., Lj. Nešić, M. Belić, T. Furman and L. Savin. 2002. Land potential of Serbia. Traktori i pogonske mašine, 7:43-51. (in Serbian)
  • Hagerman, A., I. Harvey-Mueller and H.P.S. Makkar. 2000. Quantification of tannins in tree foliage – a Laboratory manual, FAO/IAEA, Vienna, Austria.
  • IBM SPSS Statistics 22.0, trial version, https://www.ibm.com/analytics/spss-trials, (Accessed May 25, 2020)
  • Khayatnezhad, M. and R. Gholamin. 2010. Study of NaCl salinity effect on wheat (Triticum aestivum L.) cultivars ar germination stage. Am. Eurasian J. Agric. Environ. Sci. 9:128-132.
  • Kumar, S., A.S. Beena, M. Awana and A. Singh. 2017. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front. Plant. Sci. 8:1151.
  • Lee, S., Z. Mbwambo, H. Chung, L. Luyengi, E. Gamez, R. Mehta, A. Kinghorn and J. Pezzuto 1998. Evaluation of the antioxidant potential of natural products. Comb. Chem. High T. Scr. 1:35-46.
  • Miljković, N.S. 1996. Fundamentals of pedology. Faculty of natural sciences, Institute of geography, Novi Sad, Serbia. (in Serbian)
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7:405-410.
  • Mittler, R., S. Vanderauwera, M. Gollery and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant. Sci. 9:490-498.
  • Mohamed, A.A. and A.A. Aly. 2008. Alternations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under seawater salt stress. Am. Eurasian J. Sci. Res. 3:139-146.
  • Petrović, S., M. Dimitrijević and B. Banjac. 2016. Variability and interrelationship of yield components in wheat grown on solonetz and chernozem soil. Ann. Agron. 40:47-52. (in Serbian)
  • Rao, A., S.D. Ahmad, S.M. Sabir, S. Awan, A.H. Shah, M.F. Khan, S.A. Khan, S. Shafique, S. Arif, S.R. Abbas and M. Gohar. 2013. Antioxidant activity and lipid peroxidation of selected wheat cultivars under salt stress. J. Med. Plants Res. 74:155-164.
  • RHMZ 2020. Republic Hydrometeorological Service of Serbia, http://www.hidmet.gov.rs/, (Accessed May 20, 2020)
  • Rose, C. 2004. An Introduction to the Environmental Physics of Soil. Water and Watersheds. Cambridge (GB): Cambridge University Press.
  • Tester, M and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91:503-527.
  • Tóth, G., L. Montanarella, V. Stolbovoy, F. Máté, K. Bódis, A. Jones, P. Panagos, M. Van and M. Liedekerke. 2008. Soils of the European Union. Office for Official publications of the European Communities, Luxembourg.
  • Turki, N., M. Harrabi, O. Kazutoshi. 2012. Effect of salinity on grain yield and quality of wheat and genetic relationships among durum and common wheat. J. Arid Land Stud. 22:311-314.
  • Turkylmaz, B., L. Yildiz Aktas and A. Guven. 2011. Salinity induced differences in growth and nutrient accumulation in five barley cultivars. Turk. J. Field Crops. 16(1):84-92.
  • Zendehbad, S.H., M.J. Mehran and S. Malla. 2014. Flavonoids and phenolic content in wheat grass plant (Triticum aestivum). Asian J. Pharm. Chlin. Res. 7:184-187.
  • Zieliński, H and H. Kozłowska. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 48:2008-2016.