USING LINE × TESTER METHOD AND HETEROTIC GROUPING TO SELECT HIGH YIELDING GENOTYPES OF BREAD WHEAT (Triticum aestivum L.)

Studies on genetic gain, made by direct or indirect phenotypic selection, are needed regularly since they offer valuable information for breeding programs. The purpose of this study to investigate the gene effects on the yield-related traits of the F1 and F2 populations of bread wheat “line×tester” crosses; to identify suitable parents and promising hybrids for development of high yielding varieties; to determine correlations between genetic distances of the parents and heterosis with heterotic groups (HG) based on specific combining ability (SCA). The combining abilities, heritability, heterosis (Ht)-heterobeltiosis (Hb) and the potential of populations as a HG were analysed. According to the results, non-additive gene effects were predominated and narrow sense heritability was low for all examined features, significant combining ability effects were determined for some parents and hybrids. While DH18, DH20 and Harmankaya-99 were good combiners, “DH16×Altay-2000”, “DH16×Kate A-1” and “DH21×Kate A-1” were promising hybrids. The yield, Ht and SCA were higher in inter-group hybrids than intra-group hybrids in HG. Although molecular markers are considered more reliable to create HG, only marker selection will not adequate to improve the trait in question because of complex genetic structure and environmental influence. Therefore, HG based on yield-specific SCA can be utilized as a reliable parameter in breeding studies. 

___

  • Abdel, Nour, N.A.R., H. S. A. El-Fateh and A. K. Mostafa. 2011. Line × tester analysis for yield and its traits in bread wheat. Egypt. J. Agric. Res. 89 (3): 979-992.
  • Acquaah, G. 2012. Principles of Plant Genetics and Breeding. Second edition, John Wiley and Sons, UK.
  • Ahmad, E., M. Akhtar, S. Badoni and J. P. Jaiswal. 2017. Combining ability studies for seed yield related attributes and quality parameters in bread wheat Triticum aestivum L.. Journal of Genetics Genomics and Plant Breeding, 1: 21- 27.
  • Akel, W., P. Thorwarth, V. Mirdita, E. A. Weissman, G. Liu, T. Würschum and C. F. H. Longin. 2018. Can spelt wheat be used as heterotic group for hybrid wheat breeding?. Theoretical and Applied Genetics 131 (4): 973- 984.
  • Altinkut, A., K. Kazan, Z. Ipekci and N. Gozukirmizi. 2001. Tolerance to paraquat is correlated with the traits associated with water stress tolerance in segregating F2 populations of barley and wheat. Euphytica 121: 81-86.
  • Anderberg, M. R. 1993. Cluster Analysis for Application. Academic press, New York.
  • Aslam, R., M. Munawar and A. Salam. 2014. Genetic architecture of yield components accessed through line × tester analysis in wheat (Triticum aestivum L.). Universal Journal of Plant Science 2(5): 93-96.
  • Aytac, Z. and G. Kinaci. 2009. Genetic variability and association studies of some quantitative characters in winter rapeseed Brassica napus L. African Journal of Biotechnology 8 (15): 3547-3554.
  • Barot, H. G., M. S. Patel, W. A. Sheikh, L. P. Patel and C. R. Allam 2014. Heterosis and combining ability analysis for yield and its component traits in wheat (Triticum aestivum L.). Electronic Journal of Plant Breeding 5(3): 350-359.
  • Beena, R., V. Vighneswaran, P. Sindhumole, M. C. Narayankutty and S. R. Voleti. 2018. Impact of high temperature stress during reproductive and grain filling stage in rice. ORYZA-An International Journal on Rice 551: 126- 133.
  • Cochran, W. G. and M. C. Cox 1957. Experimental Design. John Wiley and Sons, Inc. New York. Esposito, M. A., H. Gatti, V. P. Cravero, F. S. L. Anodo and E. L. Cointry. 2013. Combining ability and heterotic groups in Pea. Aust. J. Crop Sc. 11: 1634- 1641.
  • Falconer, D. S. and T. F. C. Mackay 1996. Introduction to Quantitative Genetics. Longman, 464 p.
  • Fan, X. M., Y. M. Zhang, W. H. Yao, H. M. Chen, J. Tan, C. X. Xu, X. L. Han, L. M. Luo and M. S. Kang. 2009. Classifying maize inbred lines into heterotic groups using a factorial mating design. Agron. J. 101: 106–112.
  • Ferrari, E., A. Picca, R. Domínguez and H. Paccapelo. 2018. Heterosis and combining ability for yield and other agronomic traits in Triticale. Open Agriculture 31: 38-45.
  • Flood, P. J., J. Harbinson and M. G. Aarts 2011. Natural genetic variation in plant photosynthesis. Trends in Plant Science 166: 327-335.
  • Fonseca, S. M. and F. L. Patterson. 1968. Hybrid vigor in a seven parent diallel cross in common winter wheat Triticum aestivum L.. Crop. Sci. 8: 85-88.
  • Goldringer, I., P. Brabant and A. Gallais. 1997. Estimation of additive and epistatic genetic variances for agronomic traits in a population of doubled-haploid lines of wheat. Heredity 79(1): 60-71.
  • Hannachi, A., Z. A. Fellahi, H. Bouzerzour and A. Boutakrabt. 2013. Diallel-cross analysis of grain yield and stress tolerance-related traits under semi-arid conditions in durum wheat (Triticum durum Desf.). Electronic Journal of Plant Breeding 41: 1027-1033.
  • Hill, W. G. 2010. Understanding and using quantitative genetic variation. Philosophical Transactions of the Royal Society of London B: Biological Sciences 3651537: 73-85.
  • Istipliler, D., E. Ilker, F. A. Tonk, G. Civi and M. Tosun. 2015. Line × tester analysis and estimating combining abilities for yield and some yield components in bread wheat. Turk. J. Field Crops 201: 72-77.
  • Jackson, P., M. Robertson, M. Cooper and G. Hammer. 1996. The role of physiological understanding in plant breeding, from a breeding perspective. Field Crops Res. 49: 11–37.
  • Kalayci, M., V. Ozbek, C. Cekic, H. Ekiz, M. Keser and F. Altay. 1998. Determination of Drought Resistant Wheat Genotypes and Development of Morphological and Physiological Parameters in Central Anatolia Conditions, Eskisehir, Tubitak Research Project Final Report. Anatolian Agricultural Research Institute (in Turkish).
  • Kempthorne, O. 1957. An Introduction to Genetic Studies. John Wiley and Sons Inc., New York. pp. 265-270.
  • Krystkowiak, K., T. Adamski, M. Surma and Z. Kaczmarek. 2009. Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat Triticum aestivum L. Euphytica 1653: 419-434.
  • Kutlu, I. and M. Olgun. 2015. Determination of genetic parameters for yield components in bread wheat. Int. J. Bioscience 612: 61-70.
  • McKinney, N. V., J. R. Schapaugh and E. T. Kanemasu. 1989. Selecting for canopy temperature differential in six populations of soybean. Crop Sci. 29: 255-259.
  • Melchinger, A. E. 1999. Genetic diversity and heterosis. In: The Genetics and Exploitation of Heterosis in Crops. Ed. Coors, J. G. and S. Pandey. ASA, CSSA, and SSSA, Madison, WI. pp. 99–118.
  • Novoselovic, D., M. Baric, G. Drezner, J. Gunjaca and A. Lalic. 2004. Quantitative inheritance of some wheat plant traits. Genetics and Molecular Biology 27(1): 92-98.
  • Ozcan, K. and N. Acikgoz. 1999. Development of a statistical package program for population genetics. In: Third Symposium on Computer Applications in Agriculture, Adana, Turkey.
  • Pandey, P., V. R. Pandey, A. Kumar, S. Yadav, D. Tiwari and R. Kumar. 2015. Relationship between heterosis and genetic diversity in Indian pigeonpea [Cajanus cajan L. Millspaugh] accessions using multivariate cluster analysis and heterotic grouping, Australian Journal of Crop Science 96: 494.
  • Rad, M. R. N., M. A. Kadir and M. R. Yusop. 2012. Genetic behaviour for plant capacity to produce chlorophyll in wheat (Triticum aestivum L). Australian Journal of Crop Science 63: 415-420.
  • Rajput, R. S. and V. S. Kandalkar. 2018. Combining ability and heterosis for grain yield and its attributing traits in bread wheat (Triticum aestivum L). Journal of Pharmacognosy and Phytochemistry 72: 113-119.
  • Reif, J. C., A. R. Hallauer and A. E. Melchinger. 2005. Heterosis and heterotic pattern in maize. Maydica 50: 215–223.
  • Reif, J. C., F. M. Gumpert, S. Fischer and A. E. Melchinger. 2007. Impact of inter population divergence on additive and dominance variance in hybrid populations. Genetics 176: 1931-1934.
  • Reynolds, M. P., S. Nagarajan, M. A. Razzaque and O. A. A. Ageeb. 2001. Heat tolerance. In: Application of Physiology in Wheat Breeding. Ed. Reynolds, M. P. CIMMYT.
  • Riday, H., E. C. Brummer, T. A. Campbell, D. Luth and P. M. Cazcarro. 2003. Comparisons of genetic and orphological distance with heterosis between Medicago sativa subsp. sativa and subsp. Falcate. Theor. Appl. Genet. 131: 37-45.
  • Saeed, M., I. H. Khalil, D. Nayab, S. A. Anjum and M. Tanveer. 2016. Combining ability and heritability for yield traits in wheat (Triticum aestivum L). Pak. J. Agric. Sci. 533: 577- 583.
  • Saeed, M. and I. H. Khalil. 2017. Combining ability and narrowsense heritability in wheat (Triticum aestivum L.) under rainfed environment. Sarhad Journal of Agriculture 331: 22-29.
  • Singh, S. P. and S. Ramanujam 1981. Genetic divergence and hybrid performance in Cicer arietinum L. Indian J. Genet.41: 268–276.
  • Singh, T. P., J. Kumari, R. Yadav and P. Prakesh. 2017. Effect of drought and high temperature on physiological traits and wheat production. Advances in Plant Physiology 15: 147.
  • Tecklewold, A. and H. C. Becker. 2006. Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian Mustard Brassica carinata A. Braun. Theor. Appl. Genet. 112: 752-759.
  • Wenkel, K. O., S. Brozio, R. Gebbers and W. Mirschel. 2003. Approaches to site-specific nitrogen fertilization. Archives of Agronomy and Soil Science 492: 149-162.
  • Yildirim, M., C. Akinci, M. Koc and C. Barutcular. 2009. Applicability of canopy temperature depression and chlorophyll content in durum wheat breeding. Anadolu J. Agric. Sci. 243: 158-166.
  • Yildirim, M., M. Koc, C. Akinci and C. Barutcular. 2013. Variations in morphological and physiological traits of bread wheat diallel crosses under timely and late sowing conditions. Field Crops Research 140: 9-17.