Production of new type insulation material: Expanded Perlite-Silica aerogel composite

Production of new type insulation material: Expanded Perlite-Silica aerogel composite

Silica aerogel is a class of nanoporous material with extremely high porosity (85–99.9 %) and specific surface area (500–1200 m2/g), as in cause very low density, low thermal conductivity. But silica aerogel have some disadvantages. One of this disadvantages is high cost. In this study, to solve this problem has been used low cost precursor which is rice husk ash. Also, we try to improve porosity. To improve the porosity we used expanded perlite (EP). To produced EP is heated the perlite to 760–1100 °C, at which point its native water is converted to vapor and the material is caused to expand to 4–20 times its original volume, then the high-porosity and lightweight aggregates are formed. In this study silica aerogels have been reinforced with EP to product new type composite material which is used as building insulation material. The prepared EP-silica aerogel composite was characterized using SEM and BET measurements.

___

  • ALOthman Z A (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874-2902. DOI: 10.3390/ma5122874
  • Aravind P R, Shajesh P, Soraru G D & Warrier K G K (2010). Ambient pressure drying: A successful approach for the preparation of silica and silica based mixed oxide aerogels. Journal of Sol-Gel Science and Technology, 54(1), 105-117. DOI: 10.1007/s10971-010-2164-2
  • Başgöz Ö & Güler Ö (2020). The unusually formation of porous silica nano-stalactite structure by high temperature heat treatment of SiO2 aerogel synthesized from rice hull. Ceramics International, 46(1), 370-380. DOI: 10.1016/j.ceramint.2019.08.271
  • Feng Q, Chen K, Ma D, Lin H, Liu Z, Qin S & Luo Y (2018). Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539, 399-406. DOI: 10.1016/j.colsurfa.2017.12.025
  • Gregg S J, Sing K S W & Salzberg H W (1967). Adsorption surface area and porosity. Journal of the Electrochemical Society, 114(11), 279C.
  • Kistler S S (1931). Coherent expanded aerogels and jellies. Nature, 127, 741(3211). DOI: 10.1038/127741a0
  • Kistler S S (1932). Coherent expanded-aerogels. Rubber Chemistry and Technology, 5(4), 600-603. DOI: 10.5254/1.3539386
  • Li C, Cheng X, Li Z, Pan Y, Huang Y & Gong L (2017). Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. Journal of Non-Crystalline Solids, 457, 52-59. DOI: 10.1016/j.jnoncrysol.2016.11.017
  • Liou T H & Yang C C (2011). Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Materials science and engineering: B, 176(7), 521-529. DOI: 10.1016/j.mseb.2011.01.007
  • Ma X, Zhou B, Gao W, Qu Y, Wang L, Wang Z, & Zhu Y (2012). A recyclable method for production of pure silica from rice hull ash. Powder Technology, 217, 497-501. DOI: 10.1016/j.powtec.2011.11.009
  • Nurkowski D, Buerger P, Akroyd J, Mosbach S & Kraft M (2016). Skeletal chemical mechanism of high-temperature TEOS oxidation in hydrogen–oxygen environment. Combustion and Flame, 166, 243-254. DOI: 10.1016/j.combustflame.2016.01.025
  • Pichór W & Janiec A (2009). Thermal stability of expanded perlite modified by mullite. Ceramics International, 35(1), 527-530. DOI: 10.1016/j.ceramint.2007.10.008
  • Stolarski M, Walendziewski J, Steininger M & Pniak B (1999). Synthesis and characteristic of silica aerogels. Applied Catalysis A: General, 177(2), 139-148. DOI: 10.1016/S0926-860X(98)00296-8
  • Tang X, Sun A, Chu C, Yu M, Ma S, Cheng Y, Guo J & Xu G (2017). A novel silica nanowire-silica composite aerogels dried at ambient pressure. Materials & Design, 115, 415-421. DOI: 10.1016/j.matdes.2016.11.080
  • Wang J, Zhang Y, Wei Y & Zhang X (2015). Fast and one-pot synthesis of silica aerogels via a quasi-solvent-exchange-free ambient pressure drying process. Microporous and Mesoporous Materials, 218, 192-198. DOI: 10.1016/j.micromeso.2015.07.019
  • Wang L, Li Z, Jing Q & Liu P (2018). Synthesis of composite insulation materials—expanded perlite filled with silica aerogel. Journal of Porous Materials, 25(2), 373-382. DOI: 10.1007/s10934-017-0448-4
  • Yang H, Li C, Yue X, Huo J, Ye F, Liu J, Shi F & Ma J (2020). New BN/SiOC aerogel composites fabricated by the sol-gel method with excellent thermal insulation performance at high temperature. Materials & Design, 185, 108217. DOI: 10.1016/j.matdes.2019.108217
  • Zhou T, Cheng X, Pan Y, Li C, Gong L & Zhang H (2018). Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Applied Surface Science, 437, 321-328. DOI: 10.1016/j.apsusc.2017.12.146
  • Zulfiqar U, Subhani T & Husain S W (2015). Towards tunable size of silica particles from rice husk. Journal of Non-Crystalline Solids, 429, 61-69. DOI: 10.1016/j.jnoncrysol.2015.08.037