Geo-Appraisal of groundwater resource for sustainable exploitation and management in Ibulesoro, Southwestern Nigeria

Geo-Appraisal of groundwater resource for sustainable exploitation and management in Ibulesoro, Southwestern Nigeria

Groundwater exploitation requires better understanding of the resource availability and quality/vulnerability. Geophysical techniques, pumping test, hydraulic measurement, borehole logging and quality test analysis have been used in Ibulesoro, southwestern Nigeria, to understanding the hydrogeological system in terms of groundwater availability, aquifer delineation, and evaluate the groundwater physico-chemical and biological contents. The study utilized multi-criteria evaluation techniques (GWPIV) to assess the overall aquifer potential/vulnerability. The geology of the area comprises granite, migmatite, migmatite gneiss, biotitic granite, and gneiss. The main water-bearing unit was the weathered layer and fractured basement, which are usually unconfined aquifer. The hydraulic conductivity and formation factor is related by y = 0.239e0.0519x with correlation coefficient of 0.0961. The average hydraulic conductivity and transmissivity are 0.52 m/d and 5.78 m2/d respectively. The hydrogeological parameters viability increases southwardly, just as groundwater movement/flow is due south. The average thickness of the weathered layer and overburden are 8.6 m and 16.1 m respectively, with dominant resistivity in the range of 80 – 200 ohm-m. The best drilling points (migmatite/gneiss geologic units) are where the fractured basement underlies the weathered layer which most not necessarily exceed 30 - 35 m. The average depth to basement rock is 16.1 m. The obtained GWPIV varied from 1.12 to 1.71, with an average of 1.30 suggesting low potential but good for drinking and irrigation uses in its present state, however highly vulnerability to contamination, as the vadose zone thickness (5.68 m avg.), AVI (0.57 avg.), and LC (0.0818 mhos avg.) all point to the low protective capability. The water types is mixed Ca-Mg-Cl. The mechanism controlling the groundwater quality falls in the mixed zone, which indicates contribution from soil/rock-water interaction, precipitation, and evaporation; while carbonic weathering is more active than the silicate weathering process.

___

  • Hordon, R. M. (1977). Water supply as a limiting factor in developing communities; endogenous Vs. exogenous sources. Water resources Bulletin, 13: 933-939.
  • Sellers, J. H. (1973). Tax implications of groundwater depletion. Groundwater, 11, 4, 27-35.
  • Dalila, Z., Boudoukha, A., Abderrahmane, B., & Lahcen, B. (2017). Water Quality Assessment for Drinking and Irrigation Using Major Ions Chemistry in The Semiarid Region: Case of Djacer Spring, Algeria, Asian Journal of Earth Science, 10:9-21. https://doi.org/10.3923/Ajes.2017.9.21
  • Collins, R., & Jenkins, A. (1996). The Impact of Agricultural Land Use on Stream Chemistry in the Middle Hills of the Himalayas, Nepal. Journal of Hydrology, 185, 71-86. http://doi.org/10.1016/0022-1694(95)03008-5
  • Davis, S. N., & Dewiest, R. J. M. (1967). Hydrogeology, John Wiley and Sons, 463.
  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and Chemical Hydrogeology. John Wiley & Sons, New York, 824.
  • Fetter, C. W. (1990). Applied Hydrogeology, 2nd Edition CBS Publisher & Distributor, 592.
  • Ndatuwong, L. G., & Yadav, G. S. (2015). Application of geo-electrical data to evaluate groundwater potential zone and assessment of overburden protective capacity in part of Sonebhadra district, Uttar Pradesh. Environmental earth sciences, 73(7), 3655-3664. http://doi.org/10.1007/s12665-014-3649-z.
  • Akinrinade, O. J., & Adesina, R. B. (2016). Hydrogeophysical investigation of groundwater potential and aquifer vulnerability prediction in basement complex terrain–a case study from Akure, Southwestern Nigeria. Materials and Geoenvironment, 63(1), 55-56. http://doi.org/10.1515/rmzmag-2016-0005
  • Bayewu, O. O., Oloruntola, M. O., Mosuro, G. O., Laniyan, T. A., Ariyo, S. O., & Fatoba, J. O. (2017). Geophysical evaluation of groundwater potential in part of southwestern Basement Complex terrain of Nigeria. Applied Water Science, 7(8), 4615-4632. https://doi.org/10.1007/s13201-017-0623-4
  • Egbueri, J. C. (2018). Assessment of the quality of groundwaters proximal to dumpsites in Awka and Nnewi metropolises: a comparative approach. International journal of energy and water resources, 2(1), 33-48. https://doi.org/10.1007/S4210 8-018-0004-1
  • Selvam, S. (2016). 1D Geoelectrical Resistivity Survey for Groundwater Studies in Coastal Area: A Case Study from Pearl City, Tamil Nadu. Journal of the Geological Society of India, 87, 169-178. http://dx.doi.org/10.1007/s12594-016-0385-x
  • Mogaji, K. A., & Omobude, O. B. (2017). Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria – A GIS-based GODT approach, NRIAG Journal of Astronomy and Geophysics, 6:2, 434-451. https://doi.org/10.1016/j.nrjag.2017.07.001
  • Telford, W. M., Geldart, L. P., Sheriff, R. E., & Keys, D. A. (1976). Applied Geophysics. Cambridge University Press, London, U. K.
  • Walton, W. C. (1991). Principles of Groundwater Engineering. Lewis Publishers, Inc., Chelsea, MI.
  • Obiora, D. N., Ibuot, J. C., & George, N. J. (2016). Evaluation of aquifer potential, geoelectric and hydraulic parameters in Ezza North, southeastern Nigeria, using geoelectric sounding. International journal of environmental science and technology, 13(2), 435-444. https://doi.org/10.1007/s13762-015-0886-y
  • Anomohanran, O. (2013). Geophysical Investigation of Groundwater Potential in Ukelegbe, Nigeria. Journal of Applied Sciences, 13, 119-125. http://dx.doi.org/10.3923/jas.2013.119.125
  • Hussain, Y., Ullah, S. F., Hussain, M. B., Martinez-Carvajal, H., & Aslam, A. Q. (2016). Protective Capacity Assessment of Vadose Zone Material by Geo-Electrical Method: A Case Study of Pakistan. International Journal of Geosciences, 7, 716-725. http://dx.doi.org/10.4236/ijg.2016.75055
  • Hamill, L., Bell, F.U. (1986). Groundwater Resources Development. Britain Library Cataloguing in Publication Data London, 151 – 158.
  • Kruseman, G. P., & de Ridder, N. A. (1994). Analysis and Evaluation of Pumping Test Data, International Institute for Land Reclamation and Improvement, AA Wageningen, The Netherlands, Second Edition (Completely Revised).
  • Logan, J. (1964). Estimating transmissivity from routine production tests of water wells. Groundwater, 2(1), 35-37. https://doi.org/10.1111/j.1745-6584.1964.tb01744.x
  • El-Naqa, A., & Al-Shayeb, A. (2009). Groundwater Protection and Management Strategy in Jordan. Water Resources Management, 23, 2379-2394. https://doi.org/10.1007/s11269-008-9386-x
  • Singh, S. N., Janardhana, R., & Ramakrishna, Ch., (2015). Evaluation of Groundwater Quality and its Suitability for Domestic and Irrigation Use in Parts of the Chandauli-Varanasi Region, Uttar Pradesh, India Journal of Water Resource and Protection, 7, 572-587. http://dx.doi.org/10.4236/jwarp.2015.77046
  • Rao, N. S. (2017). Hydrogeology- Problems with Solutions. PHI Learning Private Limited, 265.
  • Paramaguru, P., Anandhan, P., Chidambaram, S., Ganesh, N., Nepolian, M., Devary, N., Vesudevan, U., Rakesh, R. G., & Pradeep K. (2016). Appraisal of Groundwater Quality in the Cuddalore District of TN, India, International research journal of earth sciences, 4(6), 23-30.
  • Walski, T. M., & Parker, F. L. (1974). Consumers’ water quality index. Journal of the Environmental Engineering Division, 100, 259–611.
  • Hem, J. D. (1989). Study and Interpretation of the chemical characteristics of natural waters. U.S. Geological survey water supply paper 2254, 3rd Edition.
  • Napolitano, P., & Fabbri, A. (1996). Single-Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS. In: HydroGIS 96: Application of Geographical Information Systems in Hydrology and Water Resources Management, Proceedings of Vienna Conference, IAHS Pub., Vienna, 235, 559-566. http://hydrologie.org/redbooks/a235/iahs_235_0559.pdf
  • Aller, L., Bennet, T., Leher, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydro Geological Setting. EPA, 35, 600-622. https://link.springer.com/article/10.1007/s11269-008-9319-8
  • Zhu, X., & Ierland, E. C. V. (2012). Economic modeling for water quantity and quality management: A welfare program approach, Water Resource Management, 26, 2491–2511
  • Dalkey, N. C. D. (1968). An objective water quality index, The Rand Corporation Harkins. Journal - Water Pollution Control Federation, 46, 588–591.
  • Satheesh, B., Sateesh, S., Kumar, K., & Reddy, N. (2017). Assessment of Groundwater Quality for Irrigation Use and Evolution of Hydrochemeical Facies in the Yeshwanthapur Sub-Basin, Warangal Dist. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 5(4) Ver. I, 14-20. https://doi.org/ 10.9790/0990-0504011420
  • Harkins, R. D. (1974). An objective water quality index. Journal–Water Pollution Control Federation, 46, 588–591.
  • Couillard, D., & Lefebvre, Y. (1985). Analysis of water quality indices. Journal of Environmental Management, 21, 161–179.
  • Brutsaert, W., Gross, G. W., & Mc Gehee, R. M. (1975). C.E. Jacob’s study on the prospective and hypothetical future of the minning of the groundwater deposited, 13; 492-505.
  • Coulibaly, H., & Rodriguez, M. J. (2004). Development of performance indicators for Quebec small water utilities. Journal of Environmental Management, 73(3), 243–255. https://doi.org/ 10.1016/j.jenvman.2004.07.003
  • Gass, T. E., & Lehr, J. (1977). Groundwater energy and the groundwater heat pump. Water well journal, 31(4), 42-47.
  • Khrisat, H. T., & Al-Bakri, J. (2019). Assessment of Groundwater Vulnerability in Azraq Catchment in Fuhais-Jordan Using DRASTIC Model. Open Journal of Geology, 9, 364-377. https://doi.org/10.4236/ojg.2019.97024
  • Jain, C. K., Bandyopadhyay, A., & Bhadra, A. (2010). Assessment of Ground Water Quality for Drinking Purpose, District Nainital, Uttarakhand, India. Environmental Monitoring and Assessment, 166, 663-676. http://doi.org/10.1007/s10661-009-1031-5
  • Saeedi, M., Abessi, O., Sharifi, F., & Meraji, H. (2009). Development of groundwater quality index. Environ Monit Assess, 10pp. http://doi.org/10.1007/S10661-009-0837-5.
  • Rao, G. S., & Nageswararao, G. (2013). Assessment of ground water quality using water quality index. Archive of Environmental Sciences, 7(1), 1-5.
  • Kalaivanan, K., Gurugnanam, B., Pourghasemi, H. R., Suresh, M., & Kumaravel, S. (2017). Spatial Assessment of Groundwater Quality Using Water Quality Index and Hydrochemical Indices in the Kodavanar Sub-Basin, Tamil Nadu, India. Sustain Water Resour Manag. https://doi.org/10.1007/S4089 9-017-0148-X
  • Li, P., Qian, H., & Wu, J. (2010). Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China. E-Journal of Chemistry. 7(S1): S209-S216. https://doi.org/ 10.1155/2010/451304
  • Ojo, J. S., Olorunfemi, M. O., Aduwo, I. A., Bayode, S., Akintorinwa, O. J., Omosuyi, G. O., & Akinluyi, F.O. (2014). Assessment of surface and groundwater quality of the Akure metropolis, Southwestern Nigeria. Journal of Environment and Earth Science, ISSN 2225-0948, 4(23), 19.
  • NIMET. (2012). Nigeria Meterological Agency. Nigeria Climatic Data: Abuja, Nigeria. www.nimetng.org
  • Nigeria Geological Survey Agency (NGSA). (2006). Published by the Authority of the Federal Republic of Nigeria.
  • Orellana, E., & Mooney, H. M. (1966). Master Tables and Curves for Vertical Electrical Sounding over Layered Structures. Interciencia, Madrid, Spain.
  • Zohdy, A. A. R., Eaton, G. P., & Mabey, D. R. (1974). Application of surface geophysics to groundwater investigations. United State Geophysical Survey, Washington.
  • Loke, M. H. (1997). Electrical Imaging surveys for Environmental and Engineering Studies. A partial guide to 2-D and 3-D surveys. Minden Heights, 11700, Penang, Malaysia.
  • Gibb, J. P., Schuller, R. M., Griffin, R. A. (1981). Procedures for the Collection of Representative Water Quality Data from Monitoring Wells. Cooperative Groundwater Report No. 7, Illinois State Water Survey and Illinois State Geological Survey, Champaign, Illinois.
  • APHA, (1998). America Public Health Association. Standard Methods for the Examination of Water and Waste Water. 18th Edition, Washington D. C, 4-17.
  • Kakati, S. S., & Sarma, H. P. (2007). Studies on water quality index of drinking water of Lakhimpur District. Indian Journal of Environmental Protection, 27(5), 425-428.
  • Haque, S., Sadique, A. B. M., Mazharul, M. I., Zakia, S., Nargis, A., & Masud, H. (2017). Assessment of Irrigation Water Quality of Pabna District (North-Western Part) of Bangladesh for Securing Risk-Free Agricultural Production, American Journal of Water Science and Engineering, 3(6), 67-71. http://doi.org/10.11648/j.ajwse.20170306.11
  • Bell, F. G. (2007). Engineering Geology, Second Edition. Elsevier, 581pp.
  • Mgbenu, C. N., & Egbueri, J. C. (2019). The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Appl Water Sci. https://doi.org/10.1007/s1320 1-019-0900-5
  • Raju, N. J., Ram, P., & Dey, S. (2009). Groundwater Quality in the Lower Varuna River Basin, Varanasi District, Uttar Pradesh, India. Journal of the Geological Society of India, 7, 178-192. http://dx.doi.org/10.1007/s12040-008-0048-4
  • Vasanthavigar, M., Srinivasamoorth, K., Vijayaragavan, K., Rajiv, G. R., Chidambaram, S., Anandhan, P., Mani, V. R., & Vasudevan, S. (2010). Application of Water Quality Index for Groundwater Quality Assessment: Thirumanimuttar Sub-Basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171, 595-609. http://dx.doi.org/10.1007/s10661-009-1302-1
  • WHO, (2011). Guidelines for Drinking Water Quality, 3rd Ed. World Health Organization, Geneva, 2011.
  • Egbueri, J. C., Mgbenu, C. N., & Chukwu, C. N. (2019). Investigating the hydrogeochemical processes and quality of water resources in Ojoto and environs using integrated classical methods. Model Earth Syst Environ. https://doi.org/10.1007/s40808-019-00613–y
  • Igbemi, A., Nwaogazie, I. L., Akaranta, O., & Abu, G. O., (2019). Water Quality Assessment by Pollution Indices in Eastern Obolo Coastline Communities of Nigeria. American Journal of Water Resources, 7(3), 111-120. http://doi.org/10.12691/ajwr-7-3-4
  • Ochungo, E. A., Ouma, G. O., Obiero, J. P. O., & Odero, N. A. (2019). Water Quality Index for Assessment of Potability of Groundwater Resource in Langata Sub County, Nairobi-Kenya. American Journal of Water Resources, 7(2), 62-75. http://doi.org/10.12691/ajwr-7-2-4.
  • Piper, A. M. (1953). A Graphic Procedure in the Chemical Interpretation of Water Analysis. US Geological Survey Groundwater Note, 12.
  • Wilcox, L. V. (1948). Classification and Use of Irrigation Waters. U.S. Department of Agriculture, Washington Dc, 962.
Turkish Journal of Engineering-Cover
  • ISSN: 2587-1366
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Mersin Uüniversitesi
Sayıdaki Diğer Makaleler

Uranium migration and radioactive characteristics of the Sarıçiçek and Sarıhan Granodiorites

Suna ALTUNDAŞ, Hakan ÇINAR

Coordination compounds for rheological and physical-chemical regularity of energy consumption decrease while transporting crude oils

Vali NURULLAYEV, Usubaliyev Baybala TACİ, Gurbanov Gusein RAMAZAN, Abdullayeva Zeynab ARİF, Gasimzadeh Aysel VALİYADDİN, Hasanova Matanat MAXSUD

Buckling performance of thin-walled filled steel columns

Abdulkerim İLGÜN, Ahmad Javid ZIA, Sadrettin SANCIOĞLU, Hasan Furkan SOYDOĞAN, Münife Hanım KÖKLÜ, Semih ARIBAŞ, Berna BAYRAM

Strengthening of solid beam with fiber reinforced polymers

Şemsettin KILINÇARSLAN, Yasemin ŞİMŞEK TÜRKER

A parametric study on the dynamic lateral earth forces on retaining walls according to European and Turkish Building Earthquake Codes

Özgür Lütfi ERTUĞRUL, Babur Bek ZAHIN

Geo-Appraisal of groundwater resource for sustainable exploitation and management in Ibulesoro, Southwestern Nigeria

Olumuyiwa FALOWO, Abayomi Solomon DARAMOLA

Investigating the historical building materials with spectroscopic and geophysical methods: A case study of Mardin Castle

Lale KARATAŞ

Designing a device for measuring the velocity of liquid flowing in open channels

Hüseyin MUTLU, Emre KAYGUSUZ

Challenges, threats and advantages of using blockchain technology in the framework of sustainability of the logistics sector

Emel YONTAR

Comparative analysis of an anchored retaining wall system in a deep foundation excavation: A case study of Sivas Cultural Center Building in Türkiye

Mehmet Cemal ACAR, Abdullah KEKÜL